欢迎来到淘文阁 - 分享文档赚钱的网站! | 帮助中心 好文档才是您的得力助手!
淘文阁 - 分享文档赚钱的网站
全部分类
  • 研究报告>
  • 管理文献>
  • 标准材料>
  • 技术资料>
  • 教育专区>
  • 应用文书>
  • 生活休闲>
  • 考试试题>
  • pptx模板>
  • 工商注册>
  • 期刊短文>
  • 图片设计>
  • ImageVerifierCode 换一换

    定积分的简单应用求体积.docx

    • 资源ID:35892990       资源大小:221.48KB        全文页数:5页
    • 资源格式: DOCX        下载积分:10金币
    快捷下载 游客一键下载
    会员登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录   QQ登录  
    二维码
    微信扫一扫登录
    下载资源需要10金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    定积分的简单应用求体积.docx

    4.2定积分的简单应用(二)复习:(1) 求曲边梯形面积的方法是什么?(2) 定积分的几何意义是什么?(3) 微积分基本定理是什么?引入:我们前面学习了定积分的简单应用求面积。求体积问题也是定积分的一个重要应用。下面我们介绍一些简单旋转几何体体积的求法。1. 简单几何体的体积计算问题:设由连续曲线与直线,及轴围成的平面图形(如图甲)绕轴旋转一周所得旋转体的体积为,如何求?分析:在区间内插入个分点,使,把曲线()分割成个垂直于轴的“小长条”,如图甲所示。设第个“小长条”的宽是,。这个“小长条”绕轴旋转一周就得到一个厚度是的小圆片,如图乙所示。当很小时,第个小圆片近似于底面半径为的小圆柱。因此,第个小圆台的体积近似为该几何体的体积等于所有小圆柱的体积与:这个问题就是积分问题,则有:归纳:设旋转体是由连续曲线与直线,及轴围成的曲边梯形绕轴旋转而成,则所得到的几何体的体积为2. 利用定积分求旋转体的体积(1) 找准被旋转的平面图形,它的边界曲线直接决定被积函数(2) 分清端点(3) 确定几何体的构造(4) 利用定积分进行体积计算3. 一个以轴为中心轴的旋转体的体积若求绕轴旋转得到的旋转体的体积,则积分变量变为,其公式为类型一:求简单几何体的体积例1:给定一个边长为的正方形,绕其一边旋转一周,得到一个几何体,求它的体积思路:由旋转体体积的求法知,先建立平面直角坐标系,写出正方形旋转轴对边的方程,确定积分上、下限,确定被积函数即可求出体积。解:以正方形的一个顶点为原点,两边所在的直线为轴建立如图所示的平面直角坐标系,如图。则该旋转体即为圆柱的体积为:规律方法:求旋转体的体积,应先建立平面直角坐标系,设旋转曲线函数为。确定积分上、下限,则体积练习1:如图所示,给定直角边为的等腰直角三角形,绕轴旋转一周,求形成的几何体的体积。解:形成的几何体的体积为一圆柱的体积减去一圆锥的体积。类型二:求组合型几何体的体积例2:如图,求由抛物线与直线及所围成的图形绕轴旋转一周所得几何体的体积。思路:解答本题可先由解析式求出交点坐标。再把组合体分开来求体积。解:解方程组 得:与直线的交点坐标为所求几何体的体积为:规律方法:解决组合体的体积问题,关键是对其构造进行剖析,分解成几个简单几何体体积的与或差,然后,分别利用定积分求其体积。练习2:求由直线,直线与轴围成的平面图形绕轴旋转一周所得旋转体的体积。解:旋转体的体积:类型三:有关体积的综合问题:例3:求由曲线与所围成的平面图形绕轴旋转一周所得旋转体的体积。思路:解题的关键是把所求旋转体体积看作两个旋转体体积之差。画出草图确定被积函数的边界确定积分上、下限用定积分表示体积求定积分解:曲线与所围成的平面图形如图所示:设所求旋转体的体积为根据图像可以看出等于曲线,直线与轴围成的平面图形绕轴旋转一周所得的旋转体的体积(设为)减去曲线直线与轴围成的平面图形绕轴旋转一周所得的旋转体的体积(设为)反思:结合图形正确地把求旋转体体积问题转化为求定积分问题是解决此类问题的一般方法。练习3:求由,以及轴围成的图形绕轴旋转一周所得旋转体的体积。解:由 得:误区警示:忽略了对变量的讨论而致错例:已知曲线,与直线,。试用表示该四条曲线围成的平面图形绕轴旋转一周所形成的几何体的体积。思路:掌握对定积分的几何意义,不要忽视了对变量的讨论。解:由 得 由示意图可知:要对与1的关系进行讨论: 当时, 当时,所得旋转体的体积为追本溯源:利用定积分求旋转体的体积问题的关键在于:(1) 找准被旋转的平面图形,它的边界曲线直接决定被积函数(2) 分清端点(3) 确定几何体的构造(4) 利用定积分进行体积计算第 5 页

    注意事项

    本文(定积分的简单应用求体积.docx)为本站会员(叶***)主动上传,淘文阁 - 分享文档赚钱的网站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知淘文阁 - 分享文档赚钱的网站(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于淘文阁 - 版权申诉 - 用户使用规则 - 积分规则 - 联系我们

    本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

    工信部备案号:黑ICP备15003705号 © 2020-2023 www.taowenge.com 淘文阁 

    收起
    展开