数学毕业论文讨论一元高次方程的根.doc
2014届本科毕业论文(设计)题目:讨论一元高次方程的根 学 院:数学科学学院 专业班级:数学及应用数学09-3班 学生姓名:帕提古丽·玉山 指导教师:艾合买提老师 答辩日期:2014年5月 新疆师范大学教务处 12 / 14目 录引言31. 二次方程的求根公式32. 三次方程的求根公式32.1 形如的一元三次方程的解法32.2一般一元三次方程 的解法52.3根及系数的关系63. 一元四次方程的解法84.几类特殊高次方程的解法115.高次方程的近似值115.1 牛顿切线法125.2 二分法12总结13参考文献13致谢14讨论一元高次方程的根摘要:本文中介绍一元三次方程解的卡丹公式和一般形式的一元三次方程的解法,即判断根的各种情形且求解,还介绍解一元四次方程的方法。讨论了几类特殊五次以上的代数方程的根及其近似根的过程。关键词:一元二次方程;一元三次方程;一元四次方程;卡丹公式;判别式;近似值;高次方程。引言一元高次方程作为方程的一部分,对我们以后的学习起着相当重要的作用。关于一元高次方程,我们在中学阶段,已将掌握了一元二次方程的公式解法;一般三次方程的解法思想是先化为缺项的三次方程,再做变换转换为二次方程来求解。一般四次方程的解法也是转换为缺项的四次方程。二,三,四次方程的根的表达式以及根及系数之间的关系都已经很成熟.但求五次及五次以上的高次方程的根式解法,数学家们经历了一个非常艰难的过程。对于一般的高于五次的方程没有一般的根式解法。第一个证明“高于四次方程不能用根号求解”的是挪威数学家阿贝尔。数学家们转而研究特殊的高次方程,他们能用方程系数的代数式来表示。在一般情况下,一般的高于五次的方程求出精确根是很困难的,而且科学研究、工程技术和实际应用中,也没有必要求出精确根,只要求出根的近似值。 代数基本定理:每个次数的复系数多项式在复数域中有一根。1. 二次方程的求根公式(1)一元二次方程一般形式:。(2)一元二次方程根的表达式(3)一元二次方程根及系数的关系:(4)判别式当,方程有两个不相等的实根。当,方程有两个相等的实根。当,方程有两个复根。2. 三次方程的求根公式2.1 形如的一元三次方程的解法设有方程 (1) 我们令 并代入方程(1)得展开并整理得到 (2)为了减少(2)中的未知数,不妨设 从而(2)变为 即 根据伟大定理可知是二次方程的两个根,解这个二次方程得 从而有 , , , , 其中 , 因此方程 三个解的公式是:这个公式叫做卡丹(cardan)公式. 下面讨论根的情况:由以上可得一元三次方程的判别式: 由此可知决定了根的性质:(1) 当时,是不相等的两个实数,原方程(1)有一个实根和两个共轭虚根,即 (2)当时,原方程(1)有三个实根,并且其中两个相等,即 (3) 当时,和都是复数,并且共轭复数,即时原方程有三个互异的实根,它们是: , , 2.2一般一元三次方程 的解法设有一般地一元三次方程 (1)对它进行化简,目标是将它的二次项系数化为零。令 ,其中是一个待定常数并代入(1) 得 展开并整理得到取 (2)把(2)代入(1)得即 (3) . 其中 , 只要解出(3)的解,利用变化(2)就可以知道方程(1)的解.根据形如的一元三次方程的解法可以知道方程(3)的三个解的值。又由得到原方程的三个根. 由以上的讨论可知方程的解法步骤:(1)由的值求或代入原方程得写出的值,且写出。(2)计算判别式 及 其中根据的值计算出的解。(3) 把的值代入得到原方程的三个根。2.3根及系数的关系 , , 例1. 解出方程 .解:(1)由已知得且(2)且 即 即 由可知原方程有一个实根,两个共轭虚根,即 (3)由得到原方程的三个根: , , ,.例2. 解方程 解法(一):(1)由已知得 且 , (2)因此原方程有三个实根,其中两个相等,即 (3)由得到原方程的三个根是: , 解法(二),因式分解得()3. 一元四次方程的解法 设有方程 (1) 令 , 并代入原方程消去三次项得 (2) 设 其中系数 是待定常数,通过比较系数得 (3)若 ,则 ,此时方程是双二次方程,很容易解出若 时可解得 (4)于是 (5)设是该方程的任意一个根,则由(4)有 , 从而方程(2)变为 分别解方程 和 即可得方程(2)的解,并进一步得到方程(1)的解.例3. 解方程 . 解:令 并代入所给的方程,化简得 (1)设 因为 ,于是有得取 , , 因此方程(1)可写成 由 解得 由 解得 由 得原方程的四个根: , , .阿贝尔定理:伽罗华有着天生的数学头脑,在他还只有17岁时,就已经开始着手研究数学中最困难的问题之一“一般n次方程求解问题”。一般的五次方程的解是否也能用加减乘除开方这五种运算持代数方法从方程的系数得出呢?许多人为之耗去许多精力,但都失败了。这一问题当时已困扰数学界达300年之久。法国另一位著名数学家拉格朗日称这一问题是在“向人类的智慧挑战”。1770年,拉格朗日对上述问题的研究才算迈出重要的一步。伽罗华精心分析了二次、三次、四次方程根式解结构之后,提出了方程的预解式概念,并且还进一步看出预解式和诸根排列置换下形式不变性有关,这时他认识到求解一般五次方程的代数方法可能不存在。此后,在1825年,挪威数学家阿贝尔(Abel)终于证明了:一般的一个代数方程,如果方程的次数n5 ,那么此方程不可能用根式求解。即不存在根式表达的一般五次方程求根公式。这就是著名的阿贝尔定理。有代数基本定理可知,任何方程在复数域中至少有一根,以下我们讨论几类特殊一元高次方程的解法。4.几类特殊高次方程的解法定义:形如的方程称为二项方程。4.1 解方程解题过程:把A写成,则方程的n个根是。几何说明:复平面上及数的n次方根对应的点是一个正n边形的顶点,这些顶点在以原点为中心,以为半径的圆上,而这个n边形的顶点之一有辐角。例4:解用二项方程的解法。解:5.高次方程根的近似值 伽罗华找到了一个一元高次方程能否根式求解的判别方法,但是他还是没有给出高次程的具体求解方法。那么,如何求得高次方程的根呢? 在一般情况下,求出精确根是很困难的,而且科学研究、工程技术季实际应用中,也没有必要求出精确根,只要求出根的近似值。那么,又如何求得高次方程的根的近似值呢?设是的一个精确根,即,假设问题所要求的精确度为,也就是满足的,或满足的,称为的一个近似根。xyOx*f(xk-1)xk-1f(xk)xk 下面我们介绍一下求近似根的几个常用方法:5.1 牛顿切线法取一个初始值,然后使用下述迭代公式 ,其中是的一阶导数。 牛顿切线法有明显的几何意义,如右图,因为的根满足,在直角坐标平面中,点恰是的曲线及x轴的交点,于是每次迭代所得的点正好是曲线上点的横坐标。牛顿切线法其实就是过曲线上的一列点所作曲线的切线及x轴的交点。5.2 二分法 先将分成N等份,得到N个等长的小区间,显然每个小区间的长度。记第一个小区间为,其中,第个小区间为,则, 若对其中某些,有,则在中必有的一个根。然后对这些再分别用二分法,便能求出的一个近似根。 二分法很简便,是工程师们喜欢的一种求全部相异近似单实根的方法。问题在于如何合适地确定N,因为N太大,则工作量也会太大,而N太小时,会出现某个小区间内包含多个根,从而二分法会将这个小区间的根漏掉。 总结总的来说,如果要求解出一元三次,四次方程的根,那么根据一元三次,四次方程的解法任选用上面所述的解法能降低运算量,并且顺利达到目的。一般的一个代数方程,如果方程的次数,那么此方程不可能用根式求解。参考文献:1王萼芳,石生明.高等代数M.第三版.高等教育出版社:2003.7:27 2安敏,彭亚绵,杨爱民.数学中特殊高次方程的解法研究J.高校讲台.2007.12:134-1353中学代数研究,张奠宙,张广祥.高等教育出版社,2006年1月第一版.4一元三次方程的解法,玉素音.艾山,喀什师范学院学报,2008年12月20日出版.5初等代数研究(下册),余元希,田万海,毛宏德.高等教育出版社,1988年2月第一版.6初等代数研究,李辰明,周焕山.高等教育出版社,1995年6月第一 致 谢 大学四年的生活很快就要结束了,在这宝贵的四年学习过程中,我认识了数学系的各级领导、老师和我亲爱的同学们,得到了他们热心的帮助和关心,尤其是我的班主任,一次次的帮助我解决生活和学习上遇到的种种困难使我能够顺利的完成学业,同时我的道德修养在身边优秀的老师和同学的感染下得到了很大的提高,养成了较高的自学能力,道德品质,在此向他们表示我最衷心的感谢!四年的读书生活在这个季节即将划上一个句号,而于我的人生却只是一个逗号,我将面对又一次征程的开始。四年的求学生涯在师长、亲友的大力支持下,走得辛苦却也收获满囊,在论文即将付梓之际,思绪万千,心情久久不能平静。 伟人、名人为我所崇拜,可是我更急切地要把我的敬意和赞美献给一位平凡的人,我的导师艾合买提老师。我不是您最出色的学生,而您却是我最尊敬的老师。您治学严谨,学识渊博,思想深邃,视野雄阔,为我营造了一种良好的精神氛围。感谢您对我毕业论文的细心指导,耐心的帮我指出我的缺点,还有不顾自己的疲劳就帮我改论文。您的严谨细致、认真负责的工作态度是我学习的典范,我相信这种工作态度对我以后走上工作岗位有很大的帮助.同时我要感谢我大学四年认识的所有好朋友,所有的同学,有了他们的陪伴、支持、鼓励,我的大学生活才有意义,从他们身上我学到了很多我没有的品质,从他们身上感觉到了真正的同学情,而且找到了好几位知心朋友,我将永远珍惜这难得的友谊.到论文的顺利完成,有很多的可敬的老师、同学、朋友给了我真挚的帮助,在这里请接受我诚挚的谢意!再次对艾合买提老师表示最诚挚的谢意和祝福! 同时也感谢学院为我提供良好的做毕业设计的环境。