欢迎来到淘文阁 - 分享文档赚钱的网站! | 帮助中心 好文档才是您的得力助手!
淘文阁 - 分享文档赚钱的网站
全部分类
  • 研究报告>
  • 管理文献>
  • 标准材料>
  • 技术资料>
  • 教育专区>
  • 应用文书>
  • 生活休闲>
  • 考试试题>
  • pptx模板>
  • 工商注册>
  • 期刊短文>
  • 图片设计>
  • ImageVerifierCode 换一换

    双曲线简单几何性质练习题(9页).doc

    • 资源ID:35947808       资源大小:179KB        全文页数:10页
    • 资源格式: DOC        下载积分:15金币
    快捷下载 游客一键下载
    会员登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录   QQ登录  
    二维码
    微信扫一扫登录
    下载资源需要15金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    双曲线简单几何性质练习题(9页).doc

    -双曲线简单几何性质练习题-第 5 页双曲线的简单几何性质练习题班级 姓名 学号 1已知双曲线的离心率为2,焦点是(4,0),(4,0),则双曲线方程为()A.1 B.1 C.1 D.12(新课标卷)已知双曲线C:1(a0,b0)的离心率为,则C的渐近线方程为()Ay±x By±x Cy±x Dy±x3下列双曲线中离心率为的是()A.1 B.1 C.1 D.14中心在原点,实轴在x轴上,一个焦点在直线3x4y120上的等轴双曲线方程是()Ax2y28 Bx2y24 Cy2x28 Dy2x245已知双曲线1的两条渐近线互相垂直,则双曲线的离心率为()A. B. C. D.6双曲线1的离心率e(1,2),则k的取值范围是()A(10,0) B(12,0) C(3,0) D(60,12)7已知双曲线E的中心为原点,F(3,0)是E的焦点,过F的直线l与E相交于A,B两点,且AB的中点为N(12,15),则E的方程为()A.1 B.1 C.1 D.18(江苏高考)双曲线1的两条渐近线的方程为_9已知双曲线中心在原点,一个顶点的坐标是(3,0)且焦距与虚轴长之比为54,则双曲线的标准方程为 10过双曲线x21的左焦点F1,作倾斜角为的直线AB,其中A,B分别为直线与双曲线的交点,则|AB|的长为_11过双曲线1(a>0,b>0)的左焦点且垂直于x轴的直线与双曲线相交于M,N两点,以MN为直径的圆恰好过双曲线的右顶点,则双曲线的离心率为_12双曲线1的右顶点为A,右焦点为F,过点F平行于双曲线的一条渐近线的直线与双曲线交于点B,则AFB的面积为_13求适合下列条件的双曲线的标准方程:(1)过点(3,),离心率e;(2)已知双曲线的中心在原点,焦点F1,F2在坐标轴上,实轴长和虚轴长相等,且过点P(4,)14已知双曲线C:1(a>0,b>0)的离心率为,且.(1)求双曲线C的方程;(2)已知直线xym0与双曲线C交于不同的两点A,B,且线段AB的中点在圆x2y25上,求m的值参考答案1已知双曲线的离心率为2,焦点是(4,0),(4,0),则双曲线方程为()A.1B.1C.1 D.1解析:选A由题意知c4,焦点在x轴上, 所以21e24,所以,又由a2b24a2c216,得a24,b21.2(新课标卷)已知双曲线C:1(a0,b0)的离心率为,则C的渐近线方程为()Ay±x By±xCy±x Dy±x解析:选C因为双曲线1的焦点在x轴上,所以双曲线的渐近线方程为y±x.又离心率为e ,所以,所以双曲线的渐近线方程为y±x.3下列双曲线中离心率为的是()A.1 B.1C.1 D.1解析:选B由e得e2,则,即a22b2.因此可知B正确4中心在原点,实轴在x轴上,一个焦点在直线3x4y120上的等轴双曲线方程是()Ax2y28 Bx2y24Cy2x28 Dy2x24解析:选A令y0得,x4,等轴双曲线的一个焦点坐标为(4,0),c4,a2c2×168,故选A.5已知双曲线1的两条渐近线互相垂直,则双曲线的离心率为()A. B.C. D.解析:选B由题意可知,此双曲线为等轴双曲线等轴双曲线的实轴与虚轴相等,则ab,c a,于是e.6双曲线1的离心率e(1,2),则k的取值范围是()A(10,0) B(12,0)C(3,0) D(60,12)解析:选B由题意知k<0,a24,b2k.e21.又e(1,2),1<1<4,12<k<0.7已知双曲线E的中心为原点,F(3,0)是E的焦点,过F的直线l与E相交于A,B两点,且AB的中点为N(12,15),则E的方程为()A.1 B.1C.1 D.1解析:选B设双曲线的标准方程为1(a>0,b>0),由题意知c3,a2b29,设A(x1,y1),B(x2,y2)则有两式作差得,又AB的斜率是1,所以4b25a2,代入a2b29得a24,b25,所以双曲线标准方程是1.8(江苏高考)双曲线1的两条渐近线的方程为_解析:令0,解得y±x.答案:y±x9已知双曲线中心在原点,一个顶点的坐标是(3,0)且焦距与虚轴长之比为54,则双曲线的标准方程为_解析:由题意得双曲线的焦点在x轴上,且a3,焦距与虚轴长之比为54,即cb54,解得c5,b4,双曲线的标准方程为1.答案:110过双曲线x21的左焦点F1,作倾斜角为的直线AB,其中A,B分别为直线与双曲线的交点,则|AB|的长为_解析:双曲线的左焦点为F1(2,0),将直线AB方程:y(x2)代入双曲线方程,得8x24x>0,设A(x1,y1),B(x2,y2),x1x2,x1x2,|AB|· × 3.答案:311过双曲线1(a>0,b>0)的左焦点且垂直于x轴的直线与双曲线相交于M,N两点,以MN为直径的圆恰好过双曲线的右顶点,则双曲线的离心率为_解析:由题意知,ac,即a2acc2a2,c2ac2a20,e2e20,解得e2或e1(舍去)答案:212双曲线1的右顶点为A,右焦点为F,过点F平行于双曲线的一条渐近线的直线与双曲线交于点B,则AFB的面积为_解析:双曲线1的右顶点A(3,0),右焦点F(5,0),渐近线方程为y±x.不妨设直线FB的方程为y(x5),代入双曲线方程整理,得x2(x5)29,解得x,y,所以B.所以SAFB|AF|yB|(ca)|yB|×(53)×.答案:.13求适合下列条件的双曲线的标准方程:(1)过点(3,),离心率e;(2)已知双曲线的中心在原点,焦点F1,F2在坐标轴上,实轴长和虚轴长相等,且过点P(4,)解:(1)若双曲线的焦点在x轴上,设其标准方程为1(a>0,b>0)因为双曲线过点(3,),则1.又e ,故a24b2.由得a21,b2,故所求双曲线的标准方程为x21.若双曲线的焦点在y轴上,设其标准方程为1(a>0,b>0)同理可得b2,不符合题意综上可知,所求双曲线的标准方程为x21.(2)由2a2b得ab,e ,所以可设双曲线方程为x2y2(0)双曲线过点P(4,),1610,即6.双曲线方程为x2y26.双曲线的标准方程为1.14已知双曲线C:1(a>0,b>0)的离心率为,且.(1)求双曲线C的方程;(2)已知直线xym0与双曲线C交于不同的两点A,B,且线段AB的中点在圆x2y25上,求m的值解:(1)由题意得解得所以b2c2a22.所以双曲线C的方程为x21.(2)设A,B两点的坐标分别为(x1,y1),(x2,y2),线段AB的中点为M(x0,y0)由得x22mxm220(判别式>0)所以x0m,y0x0m2m.因为点M(x0,y0)在圆x2y25上,所以m2(2m)25.故m±1.

    注意事项

    本文(双曲线简单几何性质练习题(9页).doc)为本站会员(1595****071)主动上传,淘文阁 - 分享文档赚钱的网站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知淘文阁 - 分享文档赚钱的网站(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于淘文阁 - 版权申诉 - 用户使用规则 - 积分规则 - 联系我们

    本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

    工信部备案号:黑ICP备15003705号 © 2020-2023 www.taowenge.com 淘文阁 

    收起
    展开