椭圆综合测试题(含答案)(1).docx
周末作业八椭圆综合练习(一)命题人:高志国,透舞flb (本大题共12 4MB,每小JB 5分,共8分) 1.离心率为.长轴长为6的8网的标准方程足(4)(仍城<O(P> 或.动点P到两个定点L (- 4. Q).(4. 0)的即漓之相为乐蛆P点的凯班为()A1 2 CAS 1 -D.不能倘走3,料1ttl例娇准方丹,僧楠园的灯点坐标为()A(±Jio,o) B.«x13) D.(乜°).3知料iWl上一点P到确国的一炉点的矩国为3,画P到另一餐点例跪寓史<>A. 2*75-3R.2C.31).6.假如表示焦点在x轴上的桶阳明实数.1的取值葩困为()A (-2+x b.后 GD 的圻实 11H.关于曲线的对称性的论述正价的是)A.方程岷关于X轴对林flVi税关于丫柏加弥c.方程一基=*5=*的曲线大于jr点对称d.力程-07=41的的税关于用点对称5 .方程(a>b>0.k>0Hk,D及方锲 <a>b>0)哀示的().A.有相同的禹耶;B.有共同的住点;C.0尊长的如柏.ttffl: D.有相同的顶点.。2 4=K心/£0>L« L,、 r. eftiftlH " I,的禽心率为,过右焕点F IL斜率为"A*r”的a线及,相交于4 S两点.假设丽=3®. WJ* = (>(A) 1<B) S<C)框(p) 29 .假设个机醐长岫的K度,坦输的K度和然距或与整数列,那么论椭国的温心率是()4J1Ia7 bJ c. f i>. r ia假设点"和小户分别为照ji的中心和左加电.电p为稿n上的珈白点.“0户/户的公大使为( )A. 28. 3C. 6D. 811.舱(|的右热点为,;其看准线及1柏的文也为A .在栉01上存在点尸,意找段四的垂“平分线过点八 阳唐心中的取他&W*H)£ .iA) (0. <ff> <0. to ,v2-l, n (Z» . , 1>12假设u税>=*"*七儿曲段“公共克,那么h的取货的MJt()A 1-2 1+275 B.【"0.3Jc.-i. >+2>/2】二 堪空总:本大忠共4小18.共16分.)13假设一个确网长相的长段.短轴的长收和短距成等第敬列.那么该树阳的离心率AJ14料Bf上一点/及料解两您;点凡S的巡线的央何为九角.那么依,忧月的面枳为.15 是箱m1的一个热点.1是蚯物的一个羯点.税段BF的延长找之C 丁点D , 且IF-I t.那么l的因心率为L机网的两畲点为小F】.点人&席)满曲那么 H”J3|取ft款图为 三 解答笈:体大总共6小愿共四分.解答成写出文字说明.证明过程或演算步0.)17.(12分)点v在椭M上.mF mnTJMHi媳巨所在的n战.垂n为?,并n v为线段P embed Equation.DSMT4 f的中名.来?也的$Q韭方程交口氏U2分)蜡四由的欣点分掰足 和!.确优的寅心军过中心°«T A. B两.也.。为城点,苫44a5的面枳是2D.(1> m的侑(2直观AB的方程19 ”2分)及",:分册为8阳.心的左.右黑戏.过八团我郎 及椭阳(州交于4.R再点.n 统的恢斜角为6。二'Mfttfc的距潴为? Ji.(I )束聃W Mftfii:( II )假如做=*®,求椭加的方利20 <12分)电摘圜C:的左N也为H-过名F的“我及附阳C相交干AB两勺,汽技1的帧斜用为60 ,左三衣.(I) 求桃网C的温g率I(2> <KtnlABl= 1 .求顺IHC的方网21 (12分)在平值寅角坐标案电中.点Ba点A (7,D关于限点0对林.P电动点,且支线”及BP的斜率之枳甘于'.(I)求动点P的轨边方程:(11)设立线AP和BP分别及戊线x=3之于巨£NH:是否存在巨P使邵%»!及AnMN的面积相等?假设存在.求 出点P的坐标“名不存在.说明理山.£22 (14分)tlftlHM (a>b>0)的离心率e=:展接椭圆的四个顶包褥到的差彩的面枳为I. ( I )求楠M的 方阳(II)设直线I及确回相交于不同的西点儿B.也A的电体为(p.0) .(i) ft.求直线1的Hi科加:<ii>假设点q 9乂7川1双亚的金直丫分规上, H求L的卷MB (一)翁考答案1.选择题:H9 | 123456?89101112答案 | B . B . cb 151A B b|cD.D 9io【耕析】f<-i. o).改点('%),那么物解得.因为甘H'S), 5<0.V2所以相.此二次通数对应的生物找的对称轴为462.囚为一所以当飞=%, x.口取用城)您a【命题图】木虺如我入倒的方丹,几何性颂.邛谢财累的数v枳的至保运簸.-次函数的小谒性及燃倒的. 考森rx学们对丛碑知识的蝌热程序以及知识的嫁合应用实力,运。支力, n 解析:曲&桶处上存在点化使刚线段w的乘立平力触过点F .即凡点刊p点戊4点的距离加等而 |川=I厅£ a一品 He于站:£lc, y+c 即 at* / W 8 辽妣,+ c.又。W0,I)故Y 善案:D 二,塌空0:(本大JS共4小题.共16分.)131-1131-1假设一个料阅长轴的长强.短触的长度和短距成等票数列.累诬R网的禹心率肥我网上一点#加两生点娱/;的煌纹的夹角为戊角,那么检的而枳为.(2010全Eq文电,16),是树圆(的 个投点.B赴加处的个蠲立.线及BF的HR找女C 丁 点D . j(H=<31:, ujC的盅心奉为.£【命2速BH本小胤1:浅毋我椭口的方理及几何性KL 萄.定义,中必月学知识,可我戏形结合 总也,方田也电.此题八MN析几何的特点,"攻探讨形.形助ST ,利用几何性质可导求到箭化网理的愎住.一 f代入八I的取m&lfl为解析:收摘加方程为战一标准形K. «刀国以).F分BD所成的比为2 .16 (2010湖北文教M阅的的怎总为F,.点/<-*,*>);料量.事【 1【川折】依超通知.点P在椭阳内第他图形.出效形依科可利.'P在优点处M“为*",P在椭M顶点处出.我利比之X?故以m为因为(3%)在桶1M的内部.M“线2.+> * I上的点 (X. y)均在制81外.故此ri找ZiHS(不可能有交也.收文总M为。个.二.熄空愿,£2415>16三一解答题:17.Mi设/点的型标为4加点的坐标为(号先),由11al知 因为点加在桶BIJL所以有,把代入招,所以P点的气还是他点在! Mi上.标准方旌为确实国.18.H, <1)由己知.si c=S,所以一,一一 - (2)依#:避他设“(1.1. IM1" e*.所以y3. k=*4代入料削的方程E-a12,所吸8点的坐标为 ag所以0趣AB的方程为 19(2010辽宁文聂)(本小的济分12分)&' . !分例为我的垄,右蚀A.过':的线及雨娘fil«T* . 8两点,««的 顺科角力61)二'到“线的断向为:6.(I)来椭圆的他距(II > W4i M =2/28.求怩膻的方程.tt: < I >谈他用为?< ,由可短到出规/的知惠所以确Bjf的竹跖为4.(II)设VfcMdk*广正河川,一01找的方丹为叱七k一-4bt5C2rSsa,叩3iH5故椭阳(的方程为20 (2010江宁理聂)(20) (A小电总分值2分)的左他点为F,过点F的宜做及机忱(?相交于A, H两有.H技1的蟆斜角为 (I)求»M)c的离心率;(II)假如ABl=".求椭圆C的方程.(I> Mtt1的方程为解:设由胡隹知:y. J >0 .、TXyO. 其中因为天三质.所以f Y*i.G%g,丐 $即力“3a?*3AJ离心率.6分<11 >因为.所以,Itiw.ffitl.钾 a-3.尻=6.怖网C的方程为.“12分21 (2010北京理奴<19) (本小0共”分) 在平面宜用P标集x0)r中.点B及点A (T.1)关于限点。对林.P此动点.HIKIAP及净的外事之税尊于 (1)求动点的杭逐方程:(n>i!tfLtSAP和RP分物及M税x=3交于次“N. M> 2古。在点P使用PAR a'、的曲枳相等?假设自在.求 出点P的坐方;假设不存在.说明理由.<1)W>因为点B及A(-U)美于卑由°对称,所以点6得生标为(L-D.次力的生标为(K)')由is电初化荷行-CP 04.及动篦的为-循sS<n> Hit-:一点,的坐怀力(5)'").点M . N.坐标分别为(,%), (3,%).那么九爆斗尸为方性为,ntaBP的力典为令*=3知.F是用税乂 1(线AH的方程为-*. 14As.点,到11线八8的距戈.是从限而机& yX+用生理B。,尸加*(八用l'V> *1又l-»+M困.所以(3-%-=卬-1|,解2.因为所以故存在点P (W“九3'的面取相号.化”也,的电斥为.解&、假设“在点使用从闻相等.逆点P的坐标为(小肾)乃4八C3国大所以所以np希崔:因为言"与?.所以故存在点P s住和、北艮4A勺帜相等.此时点P的坐歌为.22 ( 2010天海文敷(21)(木小必瑞分”分)£物Kt(a>b>0)的决心率。:".连接ah的四个顶小.得到的皮形的诩取为1.(I )求书M!的方ft?!<11)&直蝶1及确质相殳于不同的西也A,B,点A的啜标为(F0> .<i) K.求忒线1的倾斜角川)假设AQ 8 "在域15 AB的+f(平分蛭匕H 31 /的他【籍机】东小& I姿4侪,口的标准方汉和几何性履,H线的方程,西点目的距离公式,我?£的核11州. 平曲对口等ASM;知识.考施用代数方法舞讨风傩曲线的僮品及故彤姑公的思力.考找维合分析及运。实力.湎 分M分.( 1)W: 111 C=. W 3孑= 可由,?=5-Z5.解却 a=2b.Ill冏色可知.flgg.”方程小符h=2 b=l,所以我留的方汉为.(H)(i)解:由(I )可如点A的坐标是(2。.欢点B的中标为(0凹),1段1的科考为k.那么直 tt I的方程为yk (x»2).i «A. R两6的至MM点方程组浦入y并整理.用 由.用从由.M.怦附工3 a.即在g委n« *±1.所以1VJH的惊幻力为I A 1 .(i«> M:或线段AB的中点为%由3)制到M的坐标为.以下分两州状况:(1) -EJ% 1B的脸标是(2彳线极标的重就平分11为¥轴,于是 :“ y.)=d2j22t5(2)身4KM.线技M»的温点平分线方理为It*由寻y»;系H”7必=2. At.所以.绘上.或