1221三角形全等的判定(1)课件.ppt
1. 什么叫全等三角形?什么叫全等三角形?能够完全重合能够完全重合的两个三角形叫的两个三角形叫 全等三角形全等三角形.2.全等三角形有什么全等三角形有什么性质?性质?全等三角形的对应边相等,对应角相等全等三角形的对应边相等,对应角相等. .已知已知 ,点点A 与与 A,点,点B与与 B,是对,是对应顶点,应顶点,试找出其中相等的边与相等的角试找出其中相等的边与相等的角. CBA ABC ACCA3 CBBC2 BAAB1)()()(CC6 BB5 AA4)()()(,所以因为 CBA ABC ABCABCABC 与与 满足上述六个条件中的满足上述六个条件中的一部一部分分是否能保证是否能保证 与与 全等呢?全等呢?CBAABCCBAABCABCABC一个条件可以吗?一个条件可以吗?两个条件可以吗?两个条件可以吗?一个条件可以吗?一个条件可以吗?1. 有有一条边一条边相等的两个三角形相等的两个三角形不一定全等不一定全等探究活动探究活动 2. 有有一个角一个角相等的两个三角形相等的两个三角形不一定全等不一定全等结论:结论:有一个条件相等不能保证两个三角形全等有一个条件相等不能保证两个三角形全等.6cm300有两个条件对应相等不能保证三角形全等有两个条件对应相等不能保证三角形全等.60o300不一定全等不一定全等1. 有有两个角两个角对应相等的两个三角形对应相等的两个三角形两个条件可以吗?两个条件可以吗?3. 有有一个角和一条边一个角和一条边对应相等的两个三角形对应相等的两个三角形2. 有有两条边两条边对应相等的两个三角形对应相等的两个三角形4cm6cm不一定全等不一定全等30060o4cm6cm不一定全等30o 6cm结论:结论:探究活动探究活动 探究活动探究活动 1. 三个角;三个角;2. 三条边;三条边;3. 两边一角;两边一角;4. 两角一边两角一边.如果给出如果给出三个三个条件画三角形,条件画三角形,你能说出有哪几种可能的情况?你能说出有哪几种可能的情况?结论结论: 三个内角对应相等的三角形三个内角对应相等的三角形 不一定全等不一定全等. .探究活动探究活动 1. 有有三个角三个角对应相等的两个三角形对应相等的两个三角形60o30030060o90o90o上,它们全等吗?剪下,放到把画好的,使,再画一个先任意画出一个ABCCBA .CAACBCCBABBACBAABC三边相等的两个三角形会全等吗?三边相等的两个三角形会全等吗?画法:画法:探究活动探究活动 ;画线段BCCB 1.ABC.则为所求作的三角形;两弧交于点为半径画弧,、线段为圆心,、分别以A ACAB CB 2.CABA 3.、连接线段ABC 三边对应相等的两个三角形全等,简三边对应相等的两个三角形全等,简写为写为“边边边边边边”或或“SSS”.用上面的结论可以判定两个三角形全等用上面的结论可以判定两个三角形全等三边对应相等的两个三角形全等三边对应相等的两个三角形全等.(简写成简写成“边边边边边边”或或“SSS”)结论结论ABCABC如何用符号语言来表达呢如何用符号语言来表达呢?,CBAABC中和在,ACCA,CBBC,BAAB(SSS). CBA ABC 指指明三角形指明三角形摆摆摆出全等的条摆出全等的条件件结论结论写出全等的写出全等的结论结论 例例. 如下图,如下图,ABC是一个钢架,是一个钢架,AB=AC,AD是连接是连接A与与BC中点中点D的支架的支架. 求证:求证: ABD ACD.分析:分析:要证明要证明 ABD ACD,首先,首先要看这两个三角形的三条边是否对应相要看这两个三角形的三条边是否对应相等。等。证明证明: D是是BC中点,中点, BD=CD. AB=AC, BD=CD, AD=AD, ABD ACD(SSS)在在ABD和和 ACD中中,(已知)(已证)(公共边)例题小结:例题小结:一审题意标注图一审题意标注图二缺条件要证明二缺条件要证明三指两个三角形三指两个三角形四按序摆出三条件四按序摆出三条件五得三角形全等五得三角形全等练习:如图,练习:如图,C是是AB的中点,的中点,AE=CF,CE=BF.求证:求证:ACD CBE .CABEF证明证明: C是是AB中点中点, AC=CB.在在ACE和和 CBF中中,AC=CB,(已证)(已证)AE=CF, (已知)(已知)CE=BF, (已知)(已知) ACE BCF(SSS).变式变式1:已知:如图,点:已知:如图,点A,D,B,C 在一条直线上,在一条直线上, 且且AE=CF,AC=BD,DE=BF.求证:求证:ADE CBF.证明:AC=BD , ACCD=DB CD, 即AD= CB.在 ADE和 CBF中, AE=CF,(已知) AD=CB, (已证) DE=BF, (已知) ADE CBF (SSS).ABEFDC变式变式2:已知:如图,点:已知:如图,点A,D,B,C在一条直线上,在一条直线上, 且且AE=CF,AC=BD,DE=BF.求证:求证:ADE CBF.ABEFDC证明:AC=BD, AC- CD=DB -CD , 即AD= CB.在 ADE和 CBF中 AE=CF,(已知) AD=CB,(已证) DE=BF, (已知) ADE CBF (SSS).小小 结结2. 三边对应相等的两个三角形全等三边对应相等的两个三角形全等(简写为(简写为“边边边边边边” 或或“SSS”););1. 知道三角形三条边的长度怎样画三角形;知道三角形三条边的长度怎样画三角形;3. 初步学会理解证明的思路,初步学会理解证明的思路, 应用应用“边边边边边边”证明两个三角形全等证明两个三角形全等.作业:目标检测21页基础练习; 22页的6、7、10题