导数题型分类大全(15页).doc
-导数题型分类(A)题型一:导数的定义及计算、常见函数的导数及运算法则(一)导数的定义:函数在处的瞬时变化率称为函数在处的导数,记作或,即如果函数在开区间内的每点处都有导数,此时对于每一个,都对应着一个确定的导数,从而构成了一个新的函数。称这个函数为函数在开区间内的导函数,简称导数,也可记作,即导数与导函数都称为导数,这要加以区分:求一个函数的导数,就是求导函数;求函数在处的导数,就是导函数在处的函数值,即。例1.函数处的导数为A,求。例2。(二)常见基本初等函数的导数公式和运算法则 :; ; 法则1: 法则2: 法则3: (理)复合函数的求导:若,则如,_;_公式的特例:_; _, _.题型二:利用导数几何意义及求切线方程导数的几何意义:函数在处的导数是曲线上点()处的切线的斜率.因此,如果存在,则曲线在点()处的切线方程为_例1若函数满足,则的值 例2设曲线在点处的切线与直线垂直,则 练习题1曲线在点处的切线方程是 2若曲线在P点处的切线平行于直线,则P点的坐标为 (1,0) 3若曲线的一条切线与直线垂直,则的方程为 4求下列直线的方程:(注意解的个数) (1)曲线在P(-1,1)处的切线; (2)曲线过点P(3,5)的切线;解:(1) 所以切线方程为 (2)显然点P(3,5)不在曲线上,所以可设切点为,则又函数的导数为,所以过点的切线的斜率为,又切线过、P(3,5)点,所以有,由联立方程组得,即切点为(1,1)时,切线斜率为;当切点为(5,25)时,切线斜率为;所以所求的切线有两条,方程分别为5设P为曲线C:yx22x3上的点,且曲线C在点P处切线倾斜角的取值范围为0,则点P横坐标的取值范围为()A1, B1,0 C0,1 D,16.下列函数中,在(0,+)上为增函数的是( )A.y=sinx B. C. D.y=ln(1+x)x7. 设f(x),g(x)是R上的可导函数,分别为f(x),g(x)的导数,且,则当a<x<b时,有( )A.f(x)g(b)>f(b)g(x) B.f(x)g(x)>f(b)g(b)C.f(x)g(a)>f(a)g(x) D.f(x)g(x)>f(b)g(a)题型三:利用导数研究函数的单调性1. 设函数在某个区间(a,b)内有导数,如果在这个区间内,则在这个区间内单调递增;如果在这个区间内,则是这个区间内单调递减.2. 求函数的单调区间的方法: (1)求导数; (2)解方程;(3)使不等式成立的区间就是递增区间,使成立的区间就是递减区间3.若函数在区间上单调递增,则在恒成立.例:1.函数yxcosxsinx在下面哪个区间内是增函数( )(A)(,)(B)(,2)(C)(,)(D)(2,3)2. 函数f(x)=xlnx(x>0)的单调递增区间是_.3.已知函数在R上单调递增,则的取值范围是_.题型四:利用导数研究函数的极值、最值。1 在区间上的最大值是 2 2已知函数处有极大值,则常数c 6 ;3函数有极小值 1 ,极大值 3 yxO12-14已知函数f (x)的导函数的图象如右图所示,那么函数f (x)的图象最有可能的是( )yxO12-2AyxO12-2ByxO12-2CyxO12-2D5.已知函数有极大值和极小值,则实数a的取值范围是( )A.-1a2 B.a-3或a6 C.-3a6 D.a-1或a2作业和练习:1.已知函数在区间(,1)上有最小值,则函数在区间(1,+)上一定( )A.有最小值 B.有最大值 C.是减函数 D.是增函数2已知函数在处取得极值,求过点A(0,16)作曲线y=f(x)的切线,求该切线的方程.3已知函数(1)求f(x)的最小值(2)若对所有x1都有f(x)ax-1,求a的取值范围.4 已知函数 其中a为大于零的常数. (1)当a=1时,求函数f(x)的单调区间和极值 (2)当 时,不等式 恒成立,求a的取值范围.5已知函数的切线方程为y=3x+1 ()若函数处有极值,求的表达式; ()在()的条件下,求函数在3,1上的最大值; ()若函数在区间2,1上单调递增,求实数b的取值范围 解:(1)由过的切线方程为: 而过故 由得 a=2,b=4,c=5 (2)当 又在3,1上最大值是13。 (3)y=f(x)在2,1上单调递增,又由知2a+b=0。 依题意在2,1上恒有0,即 当;当;当 综上所述,参数b的取值范围是6已知三次函数在和时取极值,且(1) 求函数的表达式;(2) 求函数的单调区间和极值;(3) 若函数在区间上的值域为,试求、应满足的条件解:(1) ,由题意得,是的两个根,解得,再由可得(2) ,当时,;当时,;当时,;当时,;当时,函数在区间上是增函数;在区间上是减函数;在区间上是增函数函数的极大值是,极小值是(3) 函数的图象是由的图象向右平移个单位,向上平移4个单位得到的,所以,函数在区间上的值域为()而,即于是,函数在区间上的值域为令得或由的单调性知,即综上所述,、应满足的条件是:,且7已知函数,()设函数,求函数的单调区间;()若在上存在一点,使得成立,求的取值范围8设函数(1)若的图象与直线相切,切点横坐标为,且在处取极值,求实数 的值;(2)当b=1时,试证明:不论a取何实数,函数总有两个不同的极值点 解:(1) 由题意,代入上式,解之得:a=1,b=1(2)当b=1时,因故方程有两个不同实根不妨设,由可判断的符号如下:当;当;当因此是极大值点,是极小值点,当b=1时,不论a取何实数,函数总有两个不同的极值点。题型五:利用导数研究函数的图象1如右图:是f(x)的导函数, 的图象如右图所示,则f(x)的图象只可能是( D )(A) (B) (C) (D)2函数( A )xyo4-424-42-2-2xyo4-424-42-2-2xyy4o-424-42-2-26666yx-4-2o42243方程 ( B ) A、0 B、1 C、2 D、3题型六:利用单调性、极值、最值情况,求参数取值范围1设函数 (1)求函数的单调区间、极值.(2)若当时,恒有,试确定a的取值范围.解:(1)=,令得 列表如下:x(-,a)a(a,3a)3a(3a,+)-0+0-极小极大 在(a,3a)上单调递增,在(-,a)和(3a,+)上单调递减时,时, (2),对称轴,在a+1,a+2上单调递减 ,依题, 即解得,又 a的取值范围是2已知函数f(x)x3ax2bxc在x与x1时都取得极值(1)求a、b的值与函数f(x)的单调区间(2)若对xÎ1,2,不等式f(x)<c2恒成立,求c的取值范围。解:(1)f(x)x3ax2bxc,f¢(x)3x22axb由f¢(),f¢(1)32ab0得a,b2f¢(x)3x2x2(3x2)(x1),函数f(x)的单调区间如下表:x(¥,)(,1)1(1,¥)f¢(x)00f(x)极大值¯极小值所以函数f(x)的递增区间是(¥,)与(1,¥),递减区间是(,1)(2)f(x)x3x22xc,xÎ1,2,当x时,f(x)c为极大值,而f(2)2c,则f(2)2c为最大值。要使f(x)<c2(xÎ1,2)恒成立,只需c2>f(2)2c,解得c<1或c>2题型七:利用导数研究方程的根1已知平面向量=(,1). =(,).(1)若存在不同时为零的实数k和t,使=+(t23),=-k+t,试求函数关系式k=f(t) ;(2) 据(1)的结论,讨论关于t的方程f(t)k=0的解的情况.解:(1),=0 即+(t2-3) ·(-k+t)=0. 整理后得-k+t-k(t2-3) + (t2-3)·=0 =0,=4,=1,上式化为-4k+t(t2-3)=0,即k=t(t2-3)(2)讨论方程t(t2-3)-k=0的解的情况,可以看作曲线f(t)= t(t2-3)与直线y=k的交点个数. 于是f(t)= (t2-1)= (t+1)(t-1). 令f(t)=0,解得t1=-1,t2=1.当t变化时,f(t)、f(t)的变化情况如下表:t(-,-1)-1(-1,1)1(1,+ )f(t)+0-0+F(t)极大值极小值当t=1时,f(t)有极大值,f(t)极大值=.当t=1时,f(t)有极小值,f(t)极小值=函数f(t)=t(t2-3)的图象如图1321所示,可观察出:(1)当k或k时,方程f(t)k=0有且只有一解;(2)当k=或k=时,方程f(t)k=0有两解;(3) 当k时,方程f(t)k=0有三解. 2已知函数的单调减区间为(0,4) (I)求的值; (II)若对任意的总有实数解,求实数的取值范围。解:(I) 又4分 (II)且12分题型八:导数与不等式的综合1设在上是单调函数.(1)求实数的取值范围;(2)设1,1,且,求证:.解:(1) 若在上是单调递减函数,则须这样的实数a不存在.故在上不可能是单调递减函数.若在上是单调递增函数,则,由于.从而0<a3.(2)方法1、可知在上只能为单调增函数. 若1,则 若1矛盾,故只有成立.方法2:设,两式相减得 1,u1,2已知为实数,函数(1)若函数的图象上有与轴平行的切线,求的取值范围(2)若,()求函数的单调区间()证明对任意的,不等式恒成立解:,函数的图象有与轴平行的切线,有实数解 ,所以的取值范围是,由或;由的单调递增区间是;单调减区间为易知的最大值为,的极小值为,又在上的最大值,最小值对任意,恒有3已知函数(1)当时,判断在定义域上的单调性; (2)若在上的最小值是,求的值;(3)设,若在上恒成立,求的取值范围.题型九:导数在实际中的应用1请您设计一个帐篷。它下部的形状是高为1m的正六棱柱,上部的形状是侧棱长为3m的正六棱锥(如右图所示)。试问当帐篷的顶点O到底面中心的距离为多少时,帐篷的体积最大?解:设OO1为,则由题设可得正六棱锥底面边长为:,(单位:)故底面正六边形的面积为:=,(单位:)帐篷的体积为:(单位:)求导得。令,解得(不合题意,舍去),当时,为增函数;当时,为减函数。当时,最大。答:当OO1为时,帐篷的体积最大,最大体积为。2统计表明,某种型号的汽车在匀速行驶中每小时的耗油量(升)关于行驶速度(千米/小时)的函数解析式可以表示为:已知甲、乙两地相距100千米。(I)当汽车以40千米/小时的速度匀速行驶时,从甲地到乙地要耗油多少升?(II)当汽车以多大的速度匀速行驶时,从甲地到乙地耗油最少?最少为多少升?解:(I)当时,汽车从甲地到乙地行驶了小时,要耗没(升)。(II)当速度为千米/小时时,汽车从甲地到乙地行驶了小时,设耗油量为升,依题意得令得当时,是减函数;当时,是增函数。当时,取到极小值因为在上只有一个极值,所以它是最小值。答:当汽车以40千米/小时的速度匀速行驶时,从甲地到乙地耗油17.5升。当汽车以80千米/小时的速度匀速行驶时,从甲地到乙地耗油最少,最少为11.25升。题型十:导数与向量的结合1设平面向量若存在不同时为零的两个实数s、t及实数k,使(1)求函数关系式;(2)若函数在上是单调函数,求k的取值范围。解:(1)(2)则在上有由;由。因为在t上是增函数,所以不存在k,使在上恒成立。故k的取值范围是。 -第 15 页-