七年级奥数有理数的计算技巧.docx
可编辑七年级奥数有理数的计算技巧例1 计算以下各题:1. 81011019?8101101?81019?8101?89.2. 133.4. 1?2?3?4?5?6?7?8?2021?2021?2021?2021?20215.6. 10筐苹果的重量如下:单位:千克52,53,49,47,50,54,51,48,48,49那么平均每筐苹果重多少千克.7. 58.63?1101.9?586.3?101.11?5.863?1810.8.91?3?3(1?3)?3(1?3)?3(1?3)?3(1?3)?3(1?3).10. 确定两数x,y满意2345419?861519?0.25?0.625?861519?861519?0.125. 1?2?4?2?4?8?3?6?12?4?8?16?5?10?201?3?9?2?6?18?3?9?27?4?12?36?5?15?45. 1900911101011010?1101011019?11010110112. (11018?2021)(11018?31013)?1101911015?11017?2000?202122. xyx?y?2,计算:3x?5xy?3y?x?3xy?y.11. 当x?2时,计算141?x?21?x2?1?x4?81?x8.12. 对随意实数x有等式Ax?Bx2?x?2?2x?a?cx?b,a?b,a?b?c.求B的值.13. (1?111111111?113?17)?(11?113?17?19)?(1?111?113?17?19)(111?113?117).例2 计算以下各题: 14. (1?7913312?20?1130?42?1556)?23?21;15. 11111?3?2?4?3?5?4?6?110?12;16. 1?116?0.25?3?(?2)4?7?(?18)?5?(?8)?4?(?0.125);17. 1?22?3?22?4?23?9?28.18. 某水池装有编号为1,2,?,9的9个进出水管,确定所开的水管号与水池灌满的时间如下表: 问9个水管一齐开几个小时可把水池灌满?例3 计算以下各题: 19.12021?22021?32021?20212021;20. (2021?1)?(2000?2)?(11019?3)?(1012?1010);21. 111?1222?2?333?3;2021个12021个22021个3111122.231?1?4?1?1?1011?2?1?1?1?1?1?1?1?1?2?3?2?1?3?1?4?1?2?1?3?1?101?2223. ?2?42?62?1012?12?3?52?1012?; 1?2?3?10?9?8?3?2?124. 1113?1?4?2?5?3?12021?2021?12021?2021;25. 1?3?5?2?6?10?3?9?15?4?12?20?5?15?251?2?3?2?4?6?3?6?9?4?8?12?5?10?15;26. 12?222232?42221?2?2?32?3?3?4?2021?20212021?2021;例41计算1111?1?111111?31?37?41?147?53?69?31?37?41?47?53?29?1111111?11111?3741475369?3137414753?; 2931?2计算1?1?1?15?1?1?1?1?1?1?1?1?111?3?4?1?3456?3456?345?. ?例5 确定11?2?12?3?13?4?11921n?n?1?大于2021,试求正整数n的最小值.例6? 确定S=1113?23?11013,求4S的整数局部?4S?.课后练习题:1. 计算以下各式:12000?20002000?200020002000?20002000200020002021?20212021?202120212021?2021202120212021;22000?1101911019110192000?11019?2021?11018200020002000?; 20002?2021?1101931111?2?3?2?3?4?101?101?101;4112?2?3?12?3?4?12?3?4?; ?20022?122522?1?3?132?1?101?11012?1;6?3573021031?2?2?3?3?4?101?101?101?102.2. 记1?2?3?n?n!读作n的阶乘,S?1?111!?2!?12021!,求S的整数局部?S?.?3333. 设S?2?1?3?1?4?1?1013?1?23?1?33?1?43?1?1013?1?,求?3S?.?4?1?41?41?41?44. 计算?4?1?2?4?4?6?4?8?4?10?4?1?4?.41?34?1?4?54?1?41?41?4?7?4?9?4?5. 设m,n,p是正整数,m?n,p为质数,求m至n之间全部分母为p的最简分数的和.6. 确定p,q是正整数,且q1p?1?12?3?14?1111019?2000,求证:3001是q的约数. 7 / 7