欢迎来到淘文阁 - 分享文档赚钱的网站! | 帮助中心 好文档才是您的得力助手!
淘文阁 - 分享文档赚钱的网站
全部分类
  • 研究报告>
  • 管理文献>
  • 标准材料>
  • 技术资料>
  • 教育专区>
  • 应用文书>
  • 生活休闲>
  • 考试试题>
  • pptx模板>
  • 工商注册>
  • 期刊短文>
  • 图片设计>
  • ImageVerifierCode 换一换

    离散型随机变量及其分布列测试题.docx

    • 资源ID:36034102       资源大小:186.67KB        全文页数:10页
    • 资源格式: DOCX        下载积分:15金币
    快捷下载 游客一键下载
    会员登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录   QQ登录  
    二维码
    微信扫一扫登录
    下载资源需要15金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    离散型随机变量及其分布列测试题.docx

    离散型随机变量及其分布列测试题一、选择题:1、如果是一个离散型随机变量,则假命题是( )A. 取每一个可能值的概率都是非负数;B. 取所有可能值的概率之与为1;C. 取某几个值的概率等于分别取其中每个值的概率之与;D. 在某一范围内取值的概率大于它取这个范围内各个值的概率之与2、甲乙两名篮球运动员轮流投篮直至某人投中为止,设每次投篮甲投中的概率为0.4,乙投中的概率为0.6,而且不受其他投篮结果的影响.设甲投篮的次数为,若甲先投,则A. B. C. D.3、设随机变量等可能取1、2、3.值,如果,则值为( )A. 4 B. 6 C. 10 D. 无法确定4、投掷两枚骰子,所得点数之与记为,那么表示的随机实验结果是( )A. 一枚是3点,一枚是1点 B. 两枚都是2点 C. 两枚都是4点 D. 一枚是3点,一枚是1点或两枚都是2点5盒中有10只螺丝钉,其中有3只是坏的,现从盒中随机地抽取4个,那么概率是的事件为()A恰有1只是坏的B4只全是好的C恰有2只是好的D至多有2只是坏的6. 如果 的展开式中含有非零常数项,则正整数n的最小值为A.3 B.5 C.6 D.107.连掷两次骰子得到的点数分别为m与n,记向量a=(m,n)与向量b=(1,-1)的夹角为,则的概率是A. B. C. D.8.设随机变量的分布列为,则等于( )A. B. C. D.9.一工厂生产的100个产品中有90个一等品,10个二等品,现从这批产品中抽取4个,则其中恰好有一个二等品的概率为: A. B. C. D. 10.位于坐标原点的一个质点P,其移动规则是:质点每次移动一个单位,移动的方向向上或向右,并且向上、向右移动的概率都是质点P移动5次后位于点(2,3)的概率是: A. B. C. D.11.甲、乙两人进行乒乓球比赛,比赛规则为“3局2胜”,即以先赢2局者为胜根据经验,每局比赛中甲获胜的概率为06,则本次比赛甲获胜的概率是 A. 0216 B.036 C.0432 D.06485.把一枚质地不均匀的硬币连掷5次,若恰有一次正面向上的概率与恰有两次正面向上的概率相同(均不为0也不为1),则恰有三次正面向上的概率是: A B C D12.将三颗骰子各掷一次,设事件A=“三个点数都不相同”,B=“至少出现一个6点”,则 概率等于: A B C D 13.从1,2,9这九个数中,随机抽取3个不同的数,则这3个数的与为偶数的概率是:A B C D14.从甲口袋摸出一个红球的概率是,从乙口袋中摸出一个红球的概率是,则是A2个球不都是红球的概率 B. 2个球都是红球的概率C至少有一个个红球的概率 D. 2个球中恰好有1个红球的概率 15.通讯中常采取重复发送信号的办法来减少在接收中可能发生的错误,假定接收一个信号时发生错误的概率是,为减少错误,采取每一个信号连发3次,接收时以“少数服从多数”的原则判断,则判错一个信号的概率为: A B C D16. .已知随机变量的分布列为:-2-10123P若,则实数x的取值范围是( )A. B. C. D.17. 12.一袋中有5个白球,3个红球,现从袋中往外取球,每次任取一个记下颜色后放回,直到红球出现10次时停止,设停止时共取了次球,则( )A. B. C. D. 18. 考察正方体6个面的中心,甲从这6个点中任意选两个点连成直线,乙也从这6个点中任意选两个点连成直线,则所得的两条直线相互平行但不重合的概率等于( )(A) (B) (C) (D)二、填空题:19.若展开式的二项式系数之与为,则展开式的常数项为_20. 如果在一次试验中,某事件A发生的概率为p,那么在n次独立重复试验中,这件事A发生偶数次的概率为_解:由题,因为且取不同值时事件互斥,所以,(因为,所以)21.某射手射击1次,击中目标的概率是0.9 .她连续射击4次,且各次射击是否击中目标相互之间没有影响.有下列结论:他第3次击中目标的概率是0.9;他恰好击中目标3次的概率是;他至少击中目标1次的概率是.其中正确结论的序号是 _(写出所有正确结论的序号).22.对有n(n4)个元素的总体进行抽样,先将总体分成两个子总体与 (m是给定的正整数,且2mn-2),再从每个子总体中各随机抽取2个元素组成样本.用表示元素i与j同时出现在样本中的概率,则= ; 三、解答题:23、一盒中放有大小相同的红色、绿色、黄色三种小球,已知红球个数是绿球个数的两倍,黄球个数是绿球个数的一半现从该盒中随机取出一个球,若取出红球得1分,取出黄球得0分,取出绿球得1分,试写出从该盒中取出一球所得分数的分布列24.一个口袋中装有个红球(且)与5个白球,一次摸奖从中摸两个球,两个球颜色不同则为中奖 ()试用表示一次摸奖中奖的概率; ()若,求三次摸奖(每次摸奖后放回)恰有一次中奖的概率; ()记三次摸奖(每次摸奖后放回)恰有一次中奖的概率为当取多少时,最大?24.()一次摸奖从个球中任选两个,有种,它们等可能,其中两球不同色有种,一次摸奖中奖的概率()若,一次摸奖中奖的概率,三次摸奖是独立重复试验,三次摸奖(每次摸奖后放回)恰有一次中奖的概率是: ()设每次摸奖中奖的概率为,则三次摸奖(每次摸奖后放回)恰有一次中奖的概率为,知在上为增函数,在上为减函数,当时取得最大值又,解得25. 一名学生每天骑车上学,从他家到学校的途中有6个交通岗,假设他在各个交通岗遇到红灯的事件是相互独立的,并且概率都是.(1)设为这名学生在途中遇到红灯的次数,求的分布列;(2)设为这名学生在首次停车前经过的路口数,求的分布列;(3)求这名学生在途中至少遇到一次红灯的概率.· (1)X的分布列为P(X=k)=·,k=0,1,2,3,4,5,6.       (2)Y的概率分布为:Y0123P···Y456P··(3)0.912解析:(1)将通过每个交通岗看做一次试验,则遇到红灯的概率为,且每次试验结果是相互独立的,故XB(6,),    2分所以X的分布列为P(X=k)=·,k=0,1,2,3,4,5,6.                             5分(2)由于Y表示这名学生在首次停车时经过的路口数,显然Y是随机变量,其取值为0,1,2,3,4,5.其中:Y=k(k=0,1,2,3,4,5)表示前k个路口没有遇上红灯,但在第k+1个路口遇上红灯,故各概率应按独立事件同时发生计算.P(Y=k)=·(k=0,1,2,3,4,5),而Y=6表示一路没有遇上红灯,故其概率为P(Y=6)=.                                                                                                                      8分因此Y的概率分布为:Y0123P···Y456P··12分(3)这名学生在途中至少遇到一次红灯的事件为X1=X=1或X=2或或X=6,                                                    14分所以其概率为P(X1)=1-=0.912.                                16分20一个坛子里有编号为1,2,12的12个大小相同的球,其中1到6号球是红球,其余的是黑球. 若从中任取两个球,则取到的都是红球,且至少有1个球的号码是偶数的概率为多少21、一个类似于细胞分裂的物体,一次分裂为二,两次分裂为四,如此继续分裂有限多次,而随机终止设分裂次终止的概率是(=1,2,3,)记为原物体在分裂终止后所生成的子块数目,求.22甲、乙等五名奥运志愿者被随机地分到A,B,C,D四个不同的岗位服务,每个岗位至少有一名志愿者(1)求甲、乙两人同时参加A岗位服务的概率;(2)求甲、乙两人不在同一个岗位服务的概率;(3)设随机变量X为这五名志愿者中参加A岗位服务的人数,求X的分布列高中数学系列23单元测试题(2.1)参考答案一、选择题:1、D 2、B 3、C 4、D 5、C 6、B 7、C 8、B 二、填空题:18、 20三、解答题:18、解:设黄球的个数为,由题意知绿球个数为,红球个数为,盒中的总数为所以从该盒中随机取出一球所得分数的分布列为10119、解从总数为10的门票中任取3张,总的基本事件数是C=120,而“至少有2张价格相同”则包括了“恰有2张价格相同”与“恰有3张价格相同”,即C+C(种).所以,所求概率为20解P(A)=.21、解:依题意,原物体在分裂终止后所生成的数目的分布列为2481622. 解析(1)记甲、乙两人同时参加A岗位服务为事件EA,那么P(EA).即甲、乙两人同时参加A岗位服务的概率是.(2)记甲、乙两人同时参加同一岗位服务为事件E,那么P(E).所以,甲、乙两人不在同一岗位服务的概率是P()1P(E).(3)随机变量X可能取的值为1,2,事件“X2”是指有两人同时参加A岗位服务,则P(X2).所以P(X1)1P(X2),X的分布列为:X12P第 - 10 - 页

    注意事项

    本文(离散型随机变量及其分布列测试题.docx)为本站会员(叶***)主动上传,淘文阁 - 分享文档赚钱的网站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知淘文阁 - 分享文档赚钱的网站(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于淘文阁 - 版权申诉 - 用户使用规则 - 积分规则 - 联系我们

    本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

    工信部备案号:黑ICP备15003705号 © 2020-2023 www.taowenge.com 淘文阁 

    收起
    展开