欢迎来到淘文阁 - 分享文档赚钱的网站! | 帮助中心 好文档才是您的得力助手!
淘文阁 - 分享文档赚钱的网站
全部分类
  • 研究报告>
  • 管理文献>
  • 标准材料>
  • 技术资料>
  • 教育专区>
  • 应用文书>
  • 生活休闲>
  • 考试试题>
  • pptx模板>
  • 工商注册>
  • 期刊短文>
  • 图片设计>
  • ImageVerifierCode 换一换

    回归分析相关定义(5页).doc

    • 资源ID:36059644       资源大小:182KB        全文页数:5页
    • 资源格式: DOC        下载积分:15金币
    快捷下载 游客一键下载
    会员登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录   QQ登录  
    二维码
    微信扫一扫登录
    下载资源需要15金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    回归分析相关定义(5页).doc

    -回归分析相关定义-第 5 页回归分析是一类数学模型,特别当因变量和自变量为线性关系时,它是一种特殊的线性模型。最简单的情形是一个自变量和一个因变量,且它们大体上有线性关系,这叫一元线性回归,即模型为YabX,这里X是自变量,Y是因变量,是随机误差,一般的情形,有k个自变量和一个因变量,因变量的值可以分解为两部分:一部分是由自变量的影响,即表示为自变量的函数,其中函数形式已知,但含一些未知参数;另一部分是由于其他未被考虑的因素和随机性的影响,即随机误差。当函数形式为未知参数的线性函数时,称线性回归分析模型;当函数形式为未知参数的非线性函数时,称为非线性回归分析模型。相关分析研究的是现象之间是否相关、相关的方向和密切程度,一般不区别自变量或因变量。而回归分析则要分析现象之间相关的具体形式,确定其因果关系,并用数学模型来表现其具体关系。两个变量之间到底是哪个变量受哪个变量的影响,影响程度如何,则需要通过回归分析方法来确定。一般来说,回归分析是通过规定因变量和自变量来确定变量之间的因果关系,建立回归模型,并根据实测数据来求解模型的各个参数,然后评价回归模型是否能够很好的拟合实测数据;如果能够很好的拟合,则可以根据自变量作进一步预测。R2又称为方程的确定性系数(coefficient of determination),表示方程中变量X对Y的解释程度。R2取值在0到1之间,越接近1,表明方程中X对Y的解释能力越强。通常将R2乘以100来表示回归方程解释Y变化的百分比。F检验是通过方差分析表输出的,通过显著性水平(significant level)检验回归方程的线性关系是否显著。一般来说,显著性水平在0.05以下,均有意义。回归分析的步骤根据预测目标,确定自变量和因变量明确预测的具体目标,也就确定了因变量。如预测具体目标是下一年度的销售量,那么销售量Y就是因变量。通过市场调查和查阅资料,寻找与预测目标的相关影响因素,即自变量,并从中选出主要的影响因素。 建立回归预测模型依据自变量和因变量的历史统计资料进行计算,在此基础上建立回归分析方程,即回归分析预测模型。 进行相关分析回归分析是对具有因果关系的影响因素(自变量)和预测对象(因变量)所进行的数理统计分析处理。只有当变量与因变量确实存在某种关系时,建立的回归方程才有意义。因此,作为自变量的因素与作为因变量的预测对象是否有关,相关程度如何,以及判断这种相关程度的把握性多大,就成为进行回归分析必须要解决的问题。进行相关分析,一般要求出相关关系,以相关系数的大小来判断自变量和因变量的相关的程度。 检验回归预测模型,计算预测误差回归预测模型是否可用于实际预测,取决于对回归预测模型的检验和对预测误差的计算。回归方程只有通过各种检验,且预测误差较小,才能将回归方程作为预测模型进行预测。 计算并确定预测值利用回归预测模型计算预测值,并对预测值进行综合分析,确定最后的预测值。三、一元线性回归模型对于具有线性因果关系的两个变量,由于有随机因素的干扰,两变量的线性关系中应包括随机误差项,即有: (93)对于某一确定的值,其对应的值虽有波动,但在大量观察中随机误差的期望值为零,即=0,因而从平均意义上说,总体线性回归方程为: (94)上式中,是回归直线的截距项,即为0时的值,从数学意义上理解,它表示在没有自变量的影响时,其它各种因素对因变量的平均影响;是回归系数(直线的斜率),表示自变量每变动一个单位时,因变量平均变动个单位。我们可通过样本观察值计算参数、的估计值,求得参数的估计值后,即求得样本回归方程,用它对总体线性回归方程进行估计。样本回归直线方程又称一元线性回归方程,其表达形式为: (95) 式中:表示因变量的估计值(回归理论值);和是待定参数和的估计值。一元线性回归方程中的待定参数是根据样本数据资料估计确定的。确定回归方程就是要找出与的估计值及,使直线总体看来与所有的散点最接近,即确定最优的与,统计学上常采用最小二乘法(Ordinary least squares estimation,亦称最小平方法)。设样本回归模型为: (96) 于是有: 从式(96)可以看出,和取不同值就有不同的样本回归直线,从而有不同的残差。为了保证残差最小,希望接近于0,但由于有个,还必须考虑总体残差最小,又因为可能存在正负相互抵消,最小不能真正表达总体残差最小的思想。故此又想到使最小,但使达到最小,确定参数估计值的计算较为复杂,最终选择普通最小二乘法确定和,就是估计使得所有的估计值与观察值的残差平方和达到最小的参数、即: 这就是最小二乘法的基本原理。由于本书旨在介绍该种方法在统计中的应用,故数学推导过程省略,根据最小二乘法原理,利用微积分中求极值的方法,求得、的估计值, (97)当、求出后,一元线性回归方程便确定了。单次测量值x1与测定平均值之差的平方的总和,以Q表示,Q值越大,表示测定值之间的差异越大,用偏差平方和表征差异的优点是能充分利用测度数据所提供的信息,缺点是Q随着测定值数目的增多而增大,为了克服这一缺点,用方差S2=Q/f来表征差异的大小,其中f为自由度。如一个测定结果受多个因素影响,则总偏差平方和等于实验误差与各因素(包括固定因素与随机因素)所形成的偏差平方和之总和。为了明确解释变量和随机误差各产生的效应是多少,统计学上把数据点与它在回归直线上相应位置的差异称残差,把每个残差的平方后加起来 称为残差平方和,它表示随机误差的效应意义:每一点的y值的估计值和实际值的平方差之和称为残差平方和,而y的实际值和平均值的平方差之和称为总平方和。残差平方和:为了明确解释变量和随机误差各产生的效应是多少,统计学上把数据点与它在回归直线上相应位置的差异 称残差,把每个残差的平方后加起来 称为残差平方和,它表示随机误差的效应。回归平方和 总偏差平方和=回归平方和 + 残差平方和。 残差平方和与总平方和的比值越小,判定系数 r2 的值就越大。残差图的评价 “残差图”以回归方程的自变量为横坐标,以残差为纵坐标,将每一个自变量的残差描在该平面坐标上所形成的图形。当描绘的点围绕残差等于0的直线上下随机散布,说明回归直线对原观测值的拟合情况良好。否则,说明回归直线对原观测值的拟合不理想。 从“残差图”可以直观地看出残差的绝对数值都比较小,所描绘的点都在以0为横轴的直线上下随机散布,回归直线对各个观测值的拟合情况是良好的。说明变量X与y之间有显著的线性相关关系。

    注意事项

    本文(回归分析相关定义(5页).doc)为本站会员(1595****071)主动上传,淘文阁 - 分享文档赚钱的网站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知淘文阁 - 分享文档赚钱的网站(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于淘文阁 - 版权申诉 - 用户使用规则 - 积分规则 - 联系我们

    本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

    工信部备案号:黑ICP备15003705号 © 2020-2023 www.taowenge.com 淘文阁 

    收起
    展开