欢迎来到淘文阁 - 分享文档赚钱的网站! | 帮助中心 好文档才是您的得力助手!
淘文阁 - 分享文档赚钱的网站
全部分类
  • 研究报告>
  • 管理文献>
  • 标准材料>
  • 技术资料>
  • 教育专区>
  • 应用文书>
  • 生活休闲>
  • 考试试题>
  • pptx模板>
  • 工商注册>
  • 期刊短文>
  • 图片设计>
  • ImageVerifierCode 换一换

    圆和圆的位置关系教案_数学教案-圆和圆位置关系.docx

    • 资源ID:36202289       资源大小:15.98KB        全文页数:12页
    • 资源格式: DOCX        下载积分:9.9金币
    快捷下载 游客一键下载
    会员登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录   QQ登录  
    二维码
    微信扫一扫登录
    下载资源需要9.9金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    圆和圆的位置关系教案_数学教案-圆和圆位置关系.docx

    圆和圆的位置关系教案_数学教案-圆和圆位置关系篇一:圆和圆的位置关系说明 圆和圆的位置关系教案说明 一、课题名称 本课属新人教版九年级上册第24章其次节与原有关的位置关系其次课之圆和圆的位置关系。 二、教学目的 (一)教学学问点 1了解圆与圆之间的几种位置关系 2了解两圆外切、内切与两圆圆心距d、半径R和r的数量关系的联系 (二)实力训练要求 1. 经验探究两个圆之间位置关系的过程,训练学生的探究实力 2通过平移试验直观地探究圆和圆的位置关系,发展学生的识图实力和动手操作实力 (三)情感与价值观要求 1通过探究圆和圆的位置关系,体验数学活动充溢着探究与创建,感受数学的严谨性以及数学结论的确定性 2经验探究图形的位置关系,丰富对现实空间及图形的相识,发展形象思维。 三、课型 本课属探究课。 四、课时 圆和圆的位置关系共计一课时 五、教学重点 探究圆与圆之间的几种位置关系,了解两圆外切、内切与两圆圆心距d、半径R和r的数量关系的联系 六、教学难点 探究两个圆之间的位置关系,以及外切、 内切时两圆圆心距d、半径R和r的数量关 系的过程 七、教学过程 老师借助多媒体讲解与学生合作沟通探究法 创设问题情境,引入新课 新课讲解 (一)、想一想 (二)、探究圆和圆的位置关系 我总结出共有五种位置关系,如下图: (1)外离:两个圆没有公共点,并且每一个圆上的点都在另一个圆的外部; (2)外切:两个圆有唯一公共点,除公共点外一个圆上的点都在另一个圆的外部; (3)相交:两个圆有两个公共点,一个圆上的点有的在另一个圆的外部,有的在另一个圆的内部; (4)内切:两个圆有一个公共点,除公共点外,O2上的点在O1的内部; (5)内含:两个圆没有公共点,O2上的点都在O1的内部 (三)、例题讲解 两个同样大小的肥皂泡黏在一起,其剖面如图所示(点O,O是圆心),分隔两个肥皂泡的肥皂膜PQ成一条直线,TP、NP分别为两圆的切线,求TPN的大小 1、想一想 如图(1),O1与O2外切,这个图是轴对称图形吗?假如是,它的对称轴是什么?切点与对称轴有什么位置关系?假如O1与O2内切呢?如图(2) 2、议一议 投影片 设两圆的半径分别为R和r (1)当两圆外切时,两圆圆心之间的距离(简称圆心距)d与R和r具有怎样的关系?反之当d与R和r满意这一关系时,这两个圆肯定外切吗? (2)当两圆内切时(Rr),圆心距d与R和r具有怎样的关系?反之,当d与R和r满意这一关系时,这两个圆肯定内切吗? 3、随堂练习 八、作业支配 习题39,重点检验学生对本章圆和圆的五种位置关系的驾驭状况。 九、板书设计 多媒体的综合运用 十一、教学评价:本节课我通过创设情境,学生动手探究,运用多媒体协助教学,让学生在动手中去发觉、探究,同时利用让讲解更直观,利用练习巩固学问,突出重点、突破难点,更好地全面完成教学任务。 十二、教学反思:提高了学生学习主动性,课堂气氛活跃;但学生动手实力有待提高,创新思维有待发掘。 篇二:集体备课教案圆和圆的位置关系 公开课教案 圆和圆的位置关系 数学老师:纪鸿萍 圆和圆的位置关系 授课人: 纪鸿萍 授课班级:三年三班、三年四班 素养目标: 一、学问目标: 1、使学生驾驭圆与圆的五种位置关系,概念及相切两圆连心 线的性质。 2、驾驭每种位置中的圆心距的关系,能精确地画出图形。二、实力目标: 1、培育学生亲自动手试验,学会视察图形,主动获得学问的 实力。 2、向学生渗透数形结合的思想. 三、品质目标: 从两圆公共点的个数到位置关系,又一次让学生看到事物从量 变到质变的实例,进一步培育学生辩证唯物主义的观点和理论 联系实际的作风。 四、重点难点: 两圆的五种位置关系与两圆的半径,圆心距的数量之间的关 系是重点也是难点。 五、教学过程: (一)、复习提问: 1、直线和圆有几种位置关系? 2、这几种位置关系中直线到圆心距的 距离和半径有怎样的数量关系? 3、这几种位置关系中直线和圆的交点的个数是多少? (二)、引入新课: 直线和圆的这几种位置关系是通过直线与圆的公共点的个数来定义的。直线和圆之间的相对运动,产生了三种不同的位置关系,那么平面内两个圆它们做相对运动将会产生什么样的位置呢?这就是我们这节课要学习的内容。 圆和圆的位置关系 1、依据图形运动改变,发觉规律,传授新学问。 (1)尝试活动:拿两个课前打算好的不等的两个圆形纸片,在桌面上先固定一个,另一个做平行移动,视察、分析、发觉结论。自己公布发觉的五种状况。 (2)五种位置关系的定义: 外离:两个圆没有公共点,并且每个圆上的点都在另一个圆的外部时,叫做这 两个圆外离。 (2)五种位置关系的定义: 外切:两个圆有唯一的公共点,并且除了公共点外,每个圆上的点都在另一个 圆的外部时,叫做这两个圆外切。这个唯一的公共点叫做切点。 (2)五种位置关系的定义: 相交:两个圆有两个公共点,此时叫做这两个圆相交。 (2)五种位置关系的定义: 内切:两个圆有唯一的公共点,并且除了这个公共点以外,一个圆上的点都在 另一个圆的内部时,叫做这两个圆内切,这个唯一的公共点叫做切点。 (2)五种位置关系的定义 内含:两个圆没有公共点,并且一个圆上的点都在另一个圆的内部时,叫做这 两个圆内含。 两圆同心圆是两个圆内含的一个特例。 留意: A、两圆外离与内含时,两圆都无公共点,但同时要 考虑内部和外部 的因素。两圆外切与内切也有这样的比较。 B、两圆外切与内切统称相切,它们的共性是公共点的个数唯一。 两圆位置关系的五种状况也可归纳为三类: 外离 内含 两圆位置关系相交 思索:假如两个圆无公共点即相离;有一个公共点即相切;个公共点即相交。 结论:在同一平面内随意两圆只存在以上五种位置关系 (3)相切两圆的性质: 为了进一步探讨两圆的位置关系,我们引进连心线和圆心距的概念:连心线:过两个圆圆心的直线叫做连心线。 圆心距:两个圆圆心间的距离叫做圆心距。 有两 篇三:圆与圆的位置关系教案 圆与圆的位置关系教学 平定县槐树铺中学赵英华 教学目标 学问技能 1、探究并了解圆和圆的位置关系 2、探究圆和圆的位置关系中两圆圆心距与两圆半径间的数量关系。 3、能够利用圆和圆的位置关系和数量关系解题。 数学思索 1、学生经验操作、探究、归纳、圆和圆的位置关系的过程,培育学生视察、比较、概括的逻辑思维实力。 2、学生经验探究圆和圆的位置关系中两圆圆心距与两圆半径间的数量关系的过程,培育学生运用数学语言表述问题的实力。 解决问题 1、学生在探究圆和圆的位置关系的过程中,学会运用数形结合的思想解决问题。 2、学生通过运用圆和圆的位置关系的性质与判定解题,提高运用学问和技能解决问题的实力,发展应用意识。 情感看法 学生经过操作、试验、发觉、确认等数学活动从探究两圆位置关系的过程中,体会运动改变的观点,量变到质变的辩证唯物主义观点,感受数学中的美感。 学习重、难点 重点:探究并了解圆与圆的位置关系 难点:探究圆与圆的位置关系中两圆半径与圆心距的数量关系 学习过程: 一、情境创设 我们已经探讨过点与圆、直线与圆的位置关系,如何推断点与圆、直线与圆的位置关系呢?圆与圆又有怎样的位置关系呢? 二、探究活动 活动一 操作、思索 1、在回忆、思索点与圆、直线与圆的位置关系的基础上,探讨圆与圆的位置关系。 将一个圆固定,另一个圆逐步向它移动,视察两圆的位置发生的改变,描述这种改变。平面内,两圆相对运动,可以得到以下不同的位置关系: 1) 2、两圆的五种位置关系 两个圆没有公共点,且每个圆上的点都在另一个圆的外部时,两圆外离(图1) 两圆有惟一公共点,且除了这个公共点以外,每个圆上的点都在另一个圆的外部时,两圆外切(图2) 两个圆有两个公共点时,两圆相交(图3) 两圆有惟一公共点,且除了这个公共点以外,一个圆上点都在另一个圆的内部时,两圆内切(图4),两圆外切与内切统称两个圆相切。 两圆没有公共点,且一个圆上的点都在另一个圆的内部时,两圆内含(图5),同心圆是两圆内含的特例。 3、按公共点的个数分类可分为三类 外离 外切 相离相切相交 内含 内切 活动二 探究两圆位置关系与两圆半径、圆心距的数量关系之间的联系 先由学生从五种位置关系的图形中探究,再进行总结: 若两圆的半径分别为R、r,圆心距为d,那么 ? 两圆外切 d = Rr ? 两圆相交 R?r d Rr(Rr) 两圆内切 d = Rr(R r) ? 两圆内含 d ? Rr(R r) 两圆外离 d Rr 三、例 1、 O1和O2的半径分别为3厘米和4厘米,设 (1) O1O2=8厘米; (2) O1O2=7厘米; (3)O1O2=5厘米; (4) O1O2=1厘米; (5)O1O2=0.5厘米; (6) O1和O2重合。 O1和O2的位置关系怎样? 2、定圆O半径为3cm,动圆P半径为1cm.当两圆 时,OP为 cm?点P在怎样的图形上运动?当两圆相切时,为多少? 3、如图O的半径为5cm,点P是O外一点,OP=8cm。若以P为圆心作P与O相切,求P的半径? 四、当堂检测 1、O1和O2的半径分别为3 cm和4cm,若两圆外切,则d.若两圆内 切,则d_ 2、两圆半径分别为10 cm和R,圆心距为13cm,若这两圆相切,则R的值是_ 3、当两圆外切时,圆心距为18,当两圆内切时,圆心距为8,求这两个圆的半径. 五、自我挑战 已知01和02的半径分别为R和r(R>r),圆心距为d,若两圆相交,试判定关 于x的方程x2-2(d-R)x+r2=0的根的状况。 六、课后思索 如图,王大伯家房屋后有一块长12m,宽8m的矩形空地,他 在以长边BC为直径的半圆内种菜.他家养的一只羊平常拴在A 处的一棵树上,拴羊的绳长为3m.问羊是否能吃到菜?为什么? 七、课堂小结 1、圆与圆的位置关系有五种:两圆相离、两圆外切、两圆 相交、两圆内切、两圆内含; 2、两圆位置关系与两圆半径、圆心距的数量关系之间的联 系。 八、作业 习题24.215、16

    注意事项

    本文(圆和圆的位置关系教案_数学教案-圆和圆位置关系.docx)为本站会员(ylj18****41534)主动上传,淘文阁 - 分享文档赚钱的网站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知淘文阁 - 分享文档赚钱的网站(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于淘文阁 - 版权申诉 - 用户使用规则 - 积分规则 - 联系我们

    本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

    工信部备案号:黑ICP备15003705号 © 2020-2023 www.taowenge.com 淘文阁 

    收起
    展开