【人教A版】高考数学(理)一轮设计:第五章 第2讲 平面向量基本定理及坐标表示.ppt
第2讲平面向量基本定理及坐标表示,最新考纲1.了解平面向量的基本定理及其意义;2.掌握平面向量的正交分解及其坐标表示;3.会用坐标表示平面向量的加法、减法与数乘运算;4.理解用坐标表示的平面向量共线的条件.,知 识 梳 理,1.平面向量的基本定理 如果e1,e2是同一平面内的两个_向量,那么对于这一平面内的任意向量a,_一对实数1,2,使a_. 其中,不共线的向量e1,e2叫做表示这一平面内所有向量的一组基底. 2.平面向量的正交分解 把一个向量分解为两个_的向量,叫做把向量正交分解.,不共线,有且只有,1e12e2,互相垂直,(x1x2,y1y2),(x1x2,y1y2),(x1,y1),(x2x1,y2y1),4.平面向量共线的坐标表示 设a(x1,y1),b(x2,y2),则ab_.,x1y2x2y10,诊 断 自 测,1.判断正误(在括号内打“”或“”) 精彩PPT展示,答案(1)(2)(3)(4)(5),2.(2017福建三明月考)已知向量a(2,4),b(1,1),则2ab等于() A.(5,7) B.(5,9) C.(3,7) D.(3,9) 解析2ab2(2,4)(1,1)(3,9),故选D. 答案D,答案A,4.(2016全国卷)已知向量a(m,4),b(3,2),且ab,则m_. 解析因为ab,所以由(2)m430,解得m6. 答案6,答案(1,5),考点一平面向量基本定理及其应用,规律方法(1)应用平面向量基本定理表示向量的实质是利用平行四边形法则或三角形法则进行向量的加、减或数乘运算. (2)用平面向量基本定理解决问题的一般思路是:先选择一组基底,并运用该基底将条件和结论表示成向量的形式,再通过向量的运算来解决.,考点二平面向量的坐标运算,A.1 B.2 C.3 D.4,答案(1)A(2)D,规律方法(1)巧借方程思想求坐标:若已知向量两端点的坐标,则应先求出向量的坐标,解题过程中注意方程思想的应用. (2)向量问题坐标化:向量的坐标运算,使得向量的线性运算都可以用坐标来进行,实现了向量运算的代数化,将数与形结合起来,使几何问题转化为数量运算问题.,答案(1)D(2)3,解析(1)由a(1,2),b(2,m),且ab, 得1m2(2)0,即m4.从而b(2,4), 那么2a3b2(1,2)3(2,4)(4,8).,答案(1)(4,8)(2)(8,15),规律方法(1)两平面向量共线的充要条件有两种形式:若a(x1,y1),b(x2,y2),则ab的充要条件是x1y2x2y10;若ab(b0),则ab.(2)向量共线的坐标表示既可以判定两向量平行,也可以由平行求参数.当两向量的坐标均非零时,也可以利用坐标对应成比例来求解.,思想方法 1.对平面向量基本定理的理解 (1)平面向量基本定理实际上是向量的分解定理,并且是平面向量正交分解的理论依据,也是向量的坐标表示的基础. (2)平面向量一组基底是两个不共线向量,平面向量基底可以有无穷多组. (3)用平面向量基本定理可将平面中任一向量分解成形如a1e12e2的形式. 2.向量共线的作用 向量共线常常用来解决交点坐标问题和三点共线问题,向量共线的充要条件用坐标可表示为x1y2x2y10.,易错防范 1.要注意点的坐标和向量的坐标之间的关系,向量的终点坐标减去起点坐标就是向量坐标,当向量的起点是原点时,其终点坐标就是向量坐标. 2.向量的坐标与表示向量的有向线段的起点、终点的相对位置有关系.两个相等的向量,无论起点在什么位置,它们的坐标都是相同的.,