【人教A版】高考数学(文)一轮设计:专题探究课二 高考中三角函数问题的热点题型.ppt
-
资源ID:3622893
资源大小:1.72MB
全文页数:20页
- 资源格式: PPT
下载积分:1金币
快捷下载
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
【人教A版】高考数学(文)一轮设计:专题探究课二 高考中三角函数问题的热点题型.ppt
高考导航从近几年的高考试题看,全国卷交替考查三角函数、解三角形.该部分解答题是高考得分的基本组成部分,不能掉以轻心.该部分的解答题考查的热点题型有:一考查三角函数的图象变换以及单调性、最值等;二考查解三角形问题;三是考查三角函数、解三角形与平面向量的交汇性问题,在解题过程中抓住平面向量作为解决问题的工具,要注意三角恒等变换公式的多样性和灵活性,注意题目中隐含的各种限制条件,选择合理的解决方法,灵活地实现问题的转化.,热点一三角函数的图象和性质(规范解答),注意对基本三角函数ysin x,ycos x的图象与性质的理解与记忆,有关三角函数的五点作图、图象的平移、由图象求解析式、周期、单调区间、最值和奇偶性等问题的求解,通常先将给出的函数转化为yAsin(x)的形式,然后利用整体代换的方法求解.,将f(x)化为asin xbcos xc形式得2分; 将f(x)化为Asin(x)h形式得2分; 求出最小正周期得2分. 写出x的取值范围得2分. 利用单调性分析最值得3分. 求出最值得2分.,热点二解三角形,高考对解三角形的考查,以正弦定理、余弦定理的综合运用为主.其命题规律可以从以下两方面看: (1)从内容上看,主要考查正弦定理、余弦定理以及三角函数公式,一般是以三角形或其他平面图形为背景,结合三角形的边角关系考查学生利用三角函数公式处理问题的能力;(2)从命题角度看,主要是在三角恒等变换的基础上融合正弦定理、余弦定理,在知识的交汇处命题.,探究提高三角函数和三角形的结合,一般可以利用正弦定理、余弦定理先确定三角形的边角,再代入到三角函数中,三角函数和(差)角公式的灵活运用是解决此类问题的关键.,【训练2】 四边形ABCD的内角A与C互补,且AB1,BC3,CDDA2. (1)求角C的大小和线段BD的长度; (2)求四边形ABCD的面积.,热点三三角函数与平面向量结合,三角函数、解三角形与平面向量的结合主要体现在以下两个方面:(1)以三角函数式作为向量的坐标,由两个向量共线、垂直、求模或求数量积获得三角函数解析式;(2)根据平面向量加法、减法的几何意义构造三角形,然后利用正、余弦定理解决问题.,探究提高向量是一种解决问题的工具,是一个载体,通常是用向量的数量积运算或性质转化成三角函数问题.,