小学数学知识点例题精讲《比例应用题(二)》学生版.pdf
11、比例的基本性质2、熟练掌握比例式的恒等变形及连比问题3、能够进行各种条件下比例的转化,有目的的转化;4、单位“1”变化的比例问题5、方程解比例应用题比例与百分数作为一种数学工具在人们日常生活中处理多组数量关系非常有用,这一部分内容也是小升初考试的重要内容.通过本讲需要学生掌握的内容有:一、比和比例的性质性质 1:若 a: b=c:d,则(a + c):(b + d)= a:b=c:d;性质 2:若 a: b=c:d,则(a - c):(b - d)= a:b=c:d;性质 3:若 a: b=c:d,则(a +x c):(b +x d)=a:b=c:d;(x 为常数)性质 4:若 a: b=c:d,则 ad = bc;(即外项积等于内项积)正比例:如果 ab=k(k 为常数),则称 a、b 成正比;反比例:如果 ab=k(k 为常数),则称 a、b 成反比二、主要比例转化实例 xaybybxa; xyab; abxy; xaybmxamyb; xmaymb(其中0m ); xayb xaxyab;xyabxa; xyabxyab ; xayb,yczd xaczbd;:x y zac bc bd; x的ca等于y的db,则x是y的adbc,y是x的bcad三、按比例分配与和差关系按比例分配例如:将x个物体按照:a b的比例分配给甲、乙两个人,那么实际上甲、乙两个人各自分配到的物体数量与x的比分别为:aab和:bab,所以甲分配到axab个,乙分配到bxab个.已知两组物体的数量比和数量差,求各个类别数量的问题例如:两个类别A、B,元素的数量比为:a b(这里ab),数量差为x,那么A的元素数量为axab,知识点拨知识点拨教学目标教学目标比例应用题(二)比例应用题(二)2B的元素数量为bxab,所以解题的关键是求出ab与a或b的比值四、比例题目常用解题方式和思路解答分数应用题关键是正确理解、运用单位“l”.题中如果有几个不同的单位“1”,必须根据具体情况,将不同的单位“1”,转化成统一的单位“1”,使数量关系简单化,达到解决问题的效果.在解答分数应用题时,要注意以下几点:1.题中有几种数量相比较时,要选择与各个已知条件关系密切、便于直接解答的数量为单位“1”.2.若题中数量发生变化的,一般要选择不变量为单位“1”.3.应用正、反比例性质解答应用题时要注意题中某一数量是否一定,然后再确定是成正比例,还是成反比例.找出这些具体数量相对应的分率与其他具体数量之间的正、反比例关系,就能找到更好、更巧的解法.4.题中有明显的等量关系,也可以用方程的方法去解.5.赋值解比例问题按比例分配与和差关系(一)量倍对应【例例 1】甲乙两车分别从 A, B 两地出发,相向而行出发时,甲、乙的速度比是 54,相遇后,甲的速度减少 20,乙的速度增加 20,这样,当甲到达 B 地时,乙离 A 地还有 10 千米问:A,B 两地相距多少千米?【例例 2】A、B、C三个水桶的总容积是1440公升,如果A、B两桶装满水,C桶是空的;若将A桶水的全部和B桶水的15,或将B桶水的全部和A桶水的13倒入C桶,C桶都恰好装满求A、B、C三个水桶容积各是多少公升? 【巩固巩固】 加工某种零件,甲3分钟加工1个,乙3.5分钟加工1个,丙4分钟加工1个现在三人在同样的时间内一共加工3650个零件问:甲、乙、丙三人各加工多少个零件?【巩固巩固】 学而思学校四五六年级共有 615 名学生,已知六年级学生的12,等于五年级学生的25,等于四年级学生的37.这三个年级各有多少名学生学生?例题精讲例题精讲3【例例 3】一块长方形铁板,宽是长的45从宽边截去21厘米,长边截去35%以后,得到一块正方形铁板问原来长方形铁板的长是多少厘米?【巩固巩固】 一个正方形的一边减少20%,另一边增加2米,得到一个长方形,这个长方形的面积与原正方形面积相等原正方形的边长是多少米?【例例 4】一项机械加工作业,用 4 台A型机床,5 天可以完成;用 4 台A型机床和 2 台B型机床 3 天可以完成;用 3 台B型机床和 9 台C型机床,2 天可以完成,若 3 种机床各取一台工作 5 天后,剩下A、C型机床继续工作,还需要_ 天可以完成作业【例例 5】动物园门票大人20元,小孩10元六一儿童节那天,儿童免票,结果与前一天相比,大人增加了60%,儿童增加了90%,共增加了2100人,但门票收入与前一天相同六一儿童节这天共有多少人入园?【例例 6】某水果批发市场存放的苹果与桃子的吨数的比是1:2,第一天售出苹果的20%,售出桃子的吨数与所剩桃子的吨数的比是1:3;第二天售出苹果18吨,桃子12吨,这样一来,所剩苹果的吨数是所剩桃子吨数的415,问原有苹果和桃子各有多少吨?【巩固巩固】 月初,每克黄金的价格与每桶原油的价格比是 3:5.根据图中的信息回答,月初,每克黄金的价格是 元;每桶原油的价格是 元.4【例例 7】某高速公路收费站对过往车辆的收费标准如图所示.一天,通过该收费站的大型车和中型车的辆数之比是 5:6,中型车与小型车的辆数之比是 4:11,小型车的通行费总数比大型车多 270 元.求:(1)这天通过收费站的大型车、中型车及小型车各有多少辆?(2)这天收费放入总数是多少元?【例例 8】参加某选拔赛第一轮比赛的男女生人数之比是 4 :3,所有参加第二轮比赛的 91 人中男女生人数之比是 8:5,第一轮中被淘汰的男女生人数之比是 3:4,那么第一轮比赛的学生共 人.(二)利用不变量统一份数【例例 9】有一个长方体,长和宽的比是2:1,宽与高的比是3:2表面积为272cm,求这个长方体的体积.【巩固巩固】 有一个长方体,长与宽的比是2:1,宽与高的比是3:2已知这个长方体的全部棱长之和是220厘米,求这个长方体的体积【例例 10】 某高速公路收费站对于过往车辆收费标准是:大型车30元,中型车15元,小型车10元一天,5通过该收费站的大型车和中型车数量之比是5:6,中型车与小型车之比是4:11,小型车的通行费总数比大型车多270元 (1)这天通过收费站的大型车、中型车、小型车各有多少辆?(2)这天的收费总数是多少元?【例例 11】6枚壹分硬币摞在一起与5枚贰分硬币摞在一起一样高,4枚壹分硬币摞在一起与3枚伍分硬币摞在一起一样高用壹分、贰分、伍分硬币各摞成一个圆柱体,并且三个圆柱体一样高,共用了124枚硬币,问:这些硬币的币值为多少元?【例例 12】 某工地用3种型号的卡车运送土方已知甲、乙、丙三种卡车载重量之比为10:7:6,速度比为6:8:9,运送土方的路程之比为15:14:14,三种车的辆数之比为10:5:7工程开始时,乙、丙两种车全部投入运输,但甲种车只有一半投入,直到10天后,另一半甲种车才投入工作,一共干了25天完成任务那么,甲种车完成的工作量与总工作量之比是多少?【例例 13】 将一堆糖果全部分给甲、乙、丙三个小朋友原计划甲、乙、丙三人所得糖果数的比为5:4:3实际上,甲、乙、丙三人所得糖果数的比为7:6:5,其中有一位小朋友比原计划多得了15块糖果那么这位小朋友是 (填“甲” 、 “乙”或“丙”),他实际所得的糖果数为 块【例例 14】 一个周长是56厘米的大长方形,按图与图所示意那样,划分为四个小长方形在图中小长方形面积的比是:1:2A B ,:1:2B C 而在图中相应的比例是:1:3AB ,:1:3BC .又知长方形D的宽减去D的宽所得到的差与D的长减去D的长所得到差之比为1:3求大长方形的面积DCBA DCBA6【例例 15】 有一堆糖果,其中奶糖占 45,再放人 16 块水果糖后,奶糖就只占 25那么,这堆糖果中有奶糖多少块? 【巩固巩固】 一堆围棋子有黑白两种颜色,拿走 15 枚白棋子后,黑子与白子的个数之比为2:1;再拿走 45 枚黑棋子后,黑子与白子的个数比为1:5,求开始时黑棋子与白棋子各有多少枚?【巩固巩固】 今年儿子的年龄是父亲年龄的14,15年后,儿子的年龄是父亲年龄的511今年儿子多少岁?【例例 16】 北京中学生运动会男女运动员比例为19:12,组委会决定增加女子艺术体操项目,这样男女运动员比例变为20:13;后来又决定增加男子象棋项目,男女比例变为30:19,已知男子象棋项目运动员比女子艺术体操运动员多15人,则总运动员人数为多少?【巩固巩固】 袋子里红球与白球的数量之比是19:13放入若干只红球后,红球与白球数量之比变为5:3;再放入若干只白球后,红球与白球数量之比变为13:11已知放入的红球比白球少80只那么原来袋子里共有 只球7【例例 17】 有若干个突击队参加某工地会战,已知每个突击队人数相同,而且每个队的女队员的人数是该队的男队员的718,以后上级从第一突击队调走了该队的一半队员,而且全是男队员,于是工地上的全体女队员的人数是剩下的全体男队员的817,问开始共有多少支突击队参加会战?(三)利用等量关系列方程解比例【例例 18】 某学校入学考试,参加的男生与女生人数之比是4:3 结果录取 91 人,其中男生与女生人数之比是8:5未被录取的学生中,男生与女生人数之比是3:4 问报考的共有多少人?【例例 19】 有甲、乙两块含铜率不同的合金,甲块重6千克,乙块重4千克,现在从甲、乙两块合金上各切下重量相等的一部分,将甲块上切下的部分与乙块的剩余的部分一起熔炼,再将乙块上切下的部分与甲块的剩余的部分一起熔炼,得到的两块新合金的含铜率相同,求切下的重量为_【例例 20】 一个容器内注满了水.将大、中、小三个铁球这样操作:第一次,沉入小球;第二次,取出小球,沉入中球;第三次,取出中球,沉入大球.已知第一次溢出的水量是第二次的 3 倍,第三次溢出的水量是第一次的 2 倍.求小、中、大三球的体积比.