欢迎来到淘文阁 - 分享文档赚钱的网站! | 帮助中心 好文档才是您的得力助手!
淘文阁 - 分享文档赚钱的网站
全部分类
  • 研究报告>
  • 管理文献>
  • 标准材料>
  • 技术资料>
  • 教育专区>
  • 应用文书>
  • 生活休闲>
  • 考试试题>
  • pptx模板>
  • 工商注册>
  • 期刊短文>
  • 图片设计>
  • ImageVerifierCode 换一换

    2022年电大工程数学形成性考核册作业【1-4】答案参考小抄 .pdf

    • 资源ID:36301003       资源大小:214.30KB        全文页数:12页
    • 资源格式: PDF        下载积分:4.3金币
    快捷下载 游客一键下载
    会员登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录   QQ登录  
    二维码
    微信扫一扫登录
    下载资源需要4.3金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    2022年电大工程数学形成性考核册作业【1-4】答案参考小抄 .pdf

    电大工程数学作业(一)答案(满分 100 分)第 2 章矩阵(一)单项选择题(每小题2 分,共 20 分)设,则( D) A. 4 B. 4 C. 6 D. 6 若,则( A) A. B. 1 C. D. 1 乘积矩阵中元素(C) A. 1 B. 7 C. 10 D. 8 设均为阶可逆矩阵,则下列运算关系正确的是(B) A. B. C. D. 设均为阶方阵,且,则下列等式正确的是(D) A. B. C. D. 下列结论正确的是(A) A. 若是正交矩阵,则也是正交矩阵B. 若均为阶对称矩阵,则也是对称矩阵C. 若均为阶非零矩阵,则也是非零矩阵D. 若均为阶非零矩阵,则矩阵的伴随矩阵为(C) A. B. C. D. 方阵可逆的充分必要条件是(B) A. B. C. D. 设均为阶可逆矩阵,则(D) A. B. C. D. 设均为阶可逆矩阵,则下列等式成立的是(A) A. B. C. D. (二)填空题(每小题2 分,共 20 分) 7 是关于的一个一次多项式,则该多项式一次项的系数是2 若为矩阵,为矩阵,切乘积有意义,则为54 矩阵二阶矩阵1051设,则815360设均为 3 阶矩阵,且,则72 设均为 3 阶矩阵,且,则 3 若为正交矩阵,则0 矩阵的秩为2 设是两个可逆矩阵,则1211AOOA精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 1 页,共 12 页(三)解答题(每小题8 分,共 48 分)设,求;答案:8130BA4066CA73161732CA01222265BA122377AB801512156)(CAB设,求解:10221046200123411102420)(CBABCAC已知,求满足方程中的解:252112712511234511725223821)3(21BAX写出 4 阶行列式中元素的代数余子式,并求其值答案 :0352634020) 1(1441a45350631021)1(2442a用初等行变换求下列矩阵的逆矩阵: ; ; 解:(1)919292929192929291100010001919292031320323110021020112201203231900630201102012001360630221100010001122212221|2313323212312122913123222rrrrrrrrrrrrrrIA9192929291929292911A精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 2 页,共 12 页(2)35141201132051717266221A(过程略 ) (3) 11000110001100011A求矩阵的秩解:000000001110001110110110110101110000111000111011011011011221110011100011101101101101102311210121010011011110110143424131212rrrrrrrrrr3)(AR(四)证明题(每小题4 分,共 12 分)对任意方阵,试证是对称矩阵证明:)()(AAAAAAAA是对称矩阵若是阶方阵,且,试证或证明 :是阶方阵,且12IAAAAA或1A若是正交矩阵,试证也是正交矩阵证明:是正交矩阵AA1)()()(111AAAA即是正交矩阵工程数学作业(第二次)(满分 100 分) 第 3 章线性方程组(一)单项选择题(每小题 2 分,共 16 分) 用消元法得的解为(C) A. B. C. D. 线性方程组(B) A. 有无穷多解B. 有唯一解C. 无解D. 只有零解向量组的秩为(A) A. 3 B. 2 C. 4 D. 5 设向量组为,则(B)是极大无关组A. B. C. D. 与分别代表一个线性方程组的系数矩阵和增广矩阵,若这个方程组无解,则(D) A. 秩秩B. 秩秩C. 秩秩D. 秩秩精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 3 页,共 12 页若某个线性方程组相应的齐次线性方程组只有零解,则该线性方程组(A) A. 可能无解B. 有唯一解C. 有无穷多解D. 无解以下结论正确的是(D) A. 方程个数小于未知量个数的线性方程组一定有解B. 方程个数等于未知量个数的线性方程组一定有唯一解C. 方程个数大于未知量个数的线性方程组一定有无穷多解D. 齐次线性方程组一定有解若向量组线性相关,则向量组内(A)可被该向量组内其余向量线性表出A. 至少有一个向量B. 没有一个向量C. 至多有一个向量D. 任何一个向量9设 A,为n阶矩阵,既是又是的特征值,x既是又是的属于的特征向量,则结论()成立是 AB的特征值是 A+B 的特征值是 AB 的特征值x是 A+B的属于的特征向量10设,为n阶矩阵,若等式()成立,则称和相似BAABABAB)(BPAP1BPPA(二)填空题 (每小题 2 分,共 16 分 ) 当时,齐次线性方程组有非零解向量组线性相关向量组的秩是设齐次线性方程组的系数行列式,则这个方程组有无穷多解,且系数列向量是线性相关的向量组的极大线性无关组是21,向量组的秩与矩阵的秩相同设线性方程组中有5 个未知量,且秩,则其基础解系中线性无关的解向量有个设线性方程组有解,是它的一个特解,且的基础解系为,则的通解为22110XkXkX9若是的特征值,则是方程0AI的根10若矩阵满足AA1,则称为正交矩阵(三)解答题 (第 1 小题 9 分,其余每小题11 分) 1用消元法解线性方程组解:2612100090392700188710482319018431001850188710612312314112141205183612314132124131215323rrrrrrrrrrrrA3311000411004615010124420011365004110018871048231901136500123300188710482319014323133434571931213rrrrrrrrrr精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 4 页,共 12 页31000101001001020001310004110046150101244200134241441542111rrrrrrr方程组解为31124321xxxx设有线性方程组为何值时,方程组有唯一解?或有无穷多解? 解:22322222)1)(1()1)(2(00)1(110111110110111111111111111132312131rrrrrrrrA当1且2 时,3)()(ARAR,方程组有唯一解当1时,1)()(ARAR,方程组有无穷多解判断向量能否由向量组线性表出,若能,写出一种表出方式其中解:向量能否由向量组321,线性表出,当且仅当方程组332211xxx有解这里571000117100041310730110123730136578532,321A)()(ARAR方程组无解不能由向量321,线性表出计算下列向量组的秩,并且(1)判断该向量组是否线性相关解:000000001800021101131631343393608293711131,4321该向量组线性相关求齐次线性方程组的一个基础解系解:精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 5 页,共 12 页30000000731402114501103140731407314021314053521113215213142321241312114335rrrrrrrrrrrrA000010000143100145010000100021143102114501000030002114310211450123133432212131141rrrrrrrr方程组的一般解为014314543231xxxxx令13x,得基础解系10143145求下列线性方程组的全部解解:00000000002872140121790156144280287214028721401132511163517409152413113251423212413121214553rrrrrrrrrrrrA0000000000221711012179012141r方程组一般解为2217112197432431xxxxxx令13kx,24kx,这里1k,2k为任意常数,得方程组通解00211021210171972217112197212121214321kkkkkkkkxxxx试证:任一维向量4321,aaaa都可由向量组00011,00112,01113,11114线性表示,且表示方式唯一,写出这种表示方式精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 6 页,共 12 页证明:00011001012010023100034任一维向量可唯一表示为)()()(10000100001000013442331221143214321aaaaaaaaaaaa44343232121)()()(aaaaaaa试证:线性方程组有解时,它有唯一解的充分必要条件是:相应的齐次线性方程组只有零解证明: 设BAX为含n个未知量的线性方程组该方程组有解,即nARAR)()(从而BAX有唯一解当且仅当nAR)(而相应齐次线性方程组0AX只有零解的充分必要条件是nAR)(BAX有唯一解的充分必要条件是:相应的齐次线性方程组0AX只有零解9设是可逆矩阵的特征值,且0,试证:1是矩阵1A的特征值证明:是可逆矩阵的特征值存在向量,使A1111)()()(AAAAAAI11A即1是矩阵1A的特征值10用配方法将二次型43324221242322212222xxxxxxxxxxxxf化为标准型解:42244232322143324224232212)(2)(222)(xxxxxxxxxxxxxxxxxxxf222423221)()(xxxxxx令211xxy,4232xxxy,23xy,44yx即44432332311yxyyyxyxyyx则将二次型化为标准型232221yyyf工程数学作业(第三次)(满分 100 分) 第 4 章随机事件与概率精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 7 页,共 12 页(一)单项选择题为两个事件,则(B)成立A. B. C. D. 如果(C)成立,则事件与互为对立事件A. B. C. 且D. 与互为对立事件10 张奖券中含有3 张中奖的奖券,每人购买1 张,则前3 个购买者中恰有1 人中奖的概率为(D) A. B. C. D. 4. 对于事件,命题(C)是正确的A. 如果互不相容,则互不相容B. 如果,则C. 如果对立,则对立D. 如果相容,则相容某随机试验的成功率为) 10(pp,则在 3 次重复试验中至少失败1 次的概率为( D) A.3)1(pB. 31pC. )1(3pD. )1()1()1(223ppppp6.设随机变量,且,则参数与分别是(A) A. 6, 0.8 B. 8, 0.6 C. 12, 0.4 D. 14, 0.2 7.设为连续型随机变量的密度函数,则对任意的,(A) A. B. C. D. 8.在下列函数中可以作为分布密度函数的是(B) A. B. C. D. 9.设连续型随机变量的密度函数为,分布函数为,则对任意的区间,则)(bXaP(D) A. B. C. D. 10.设为随机变量, ,当( C)时,有A. B. C. D. (二)填空题从数字 1,2,3,4,5 中任取 3 个,组成没有重复数字的三位数,则这个三位数是偶数的概率为522.已知,则当事件互不相容时,0.8 ,0.3 3.为两个事件,且,则AP4. 已知,则P15. 若事件相互独立,且,则pqqp6. 已知,则当事件相互独立时,0.65 ,0.3 7.设随机变量,则的分布函数111000 xxxx8.若,则6 9.若,则)3(2精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 8 页,共 12 页10.称为二维随机变量的协方差(三)解答题1.设为三个事件,试用的运算分别表示下列事件: 中至少有一个发生; 中只有一个发生; 中至多有一个发生; 中至少有两个发生; 中不多于两个发生; 中只有发生解 :(1)CBA(2)CBACBACBA(3) CBACBACBACBA(4)BCACAB(5)CBA(6)CBA2. 袋中有 3 个红球, 2 个白球,现从中随机抽取2 个球,求下列事件的概率: 2 球恰好同色; 2 球中至少有1 红球解 :设A=“2 球恰好同色”,B=“2 球中至少有1 红球”521013)(252223CCCAP1091036)(25231213CCCCBP3. 加工某种零件需要两道工序,第一道工序的次品率是2%,如果第一道工序出次品则此零件为次品;如果第一道工序出正品,则由第二道工序加工,第二道工序的次品率是3%,求加工出来的零件是正品的概率解: 设iA“第 i 道工序出正品” (i=1,2)9506.0)03.01)(02. 01()|()()(12121AAPAPAAP4. 市场供应的热水瓶中,甲厂产品占50%,乙厂产品占30%,丙厂产品占20%,甲、乙、丙厂产品的合格率分别为90%,85%,80%,求买到一个热水瓶是合格品的概率解: 设1产品由甲厂生产A2产品由乙厂生产A3产品由丙厂生产A 产品合格B)|()()|()()|()()(332211ABPAPABPAPABPAPBP865.080.02.085.03.09.05.05. 某射手连续向一目标射击,直到命中为止已知他每发命中的概率是,求所需设计次数的概率分布解:PXP)1(PPXP)1()2(PPXP2)1()3(PPkXPk 1)1()(故 X的概率分布是pppppppkk 12)1()1()1(3216.设随机变量的概率分布为试求精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 9 页,共 12 页解:87. 012. 03 .02. 015. 01 . 0)4() 3() 2() 1()0() 4(XPXPXPXPXPXP72. 01.012. 03.02.0)5()4()3()2()52(XPXPXPXPXP7. 03.01)3(1)3(XPXP7.设随机变量具有概率密度试求解:412)()21(210221021xxdxdxxfXP16152)()241(1412141241xxdxdxxfXP8. 设,求解:32322)()(10310 xxdxxdxxxfXE21422)()(10410222xxdxxdxxfxXE181)32(21)()()(222xEXEXD9. 设)6.0, 1(2NX,计算;解:8164. 019082. 021)33. 1 (2)33. 1()33.1 ()33. 12 . 0133. 1()8. 12. 0(XPXP0475. 09525.01)67. 1(1)67.16.01()0(XPXP10.设是独立同分布的随机变量,已知,设,求解:)()()(1)(1)1()(21211nnniiXEXEXEnXXXEnXnEXEnn1)()()(1)(1)1()(2122121nnniiXDXDXDnXXXDnXnDXD22211nnn工程数学作业(第四次)第 6 章统计推断(一)单项选择题设是来自正态总体(均未知)的样本,则(A)是统计量A. B. C. D. 设是来自正态总体(均未知)的样本,则统计量(D)不是的无偏估计A. B. C. D. 精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 10 页,共 12 页(二)填空题1统计量就是不含未知参数的样本函数2参数估计的两种方法是点估计和区间估计常用的参数点估计有矩估计法和 最大似然估计两种方法3比较估计量好坏的两个重要标准是无偏性,有效性4设是来自正态总体(已知)的样本值,按给定的显著性水平检验,需选取统计量nxU/05假设检验中的显著性水平为事件ux|0(u 为临界值)发生的概率(三)解答题1设对总体得到一个容量为10 的样本值4.5, 2.0, 1.0, 1.5, 3.5, 4.5, 6.5, 5.0, 3.5, 4.0 试分别计算样本均值和样本方差解:6.336101101101iixx8 7 8.29 .2591)(110121012iixxs2设总体的概率密度函数为试分别用矩估计法和最大似然估计法估计参数解:提示教材第214 页例 3 矩估计:,121)1()(110niixnxdxxxXExx112?最大似然估计:)()1()1();,(21121nnininxxxxxxxL0ln1ln,ln)1ln(ln11niiniixndLdxnL,1ln?1niixn3测两点之间的直线距离5 次,测得距离的值为(单位:m) :108.5 109.0 110.0 110.5 112.0 测量值可以认为是服从正态分布的,求与的估计值 并在; 未知的情况下, 分别求的置信度为0.95 的置信区间解:11051?51iixx875.1)(151?5122iixxs(1)当时,由10.95,975.021)(查表得:96.1精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 11 页,共 12 页故所求置信区间为:4.111,6.108,nxnx(2)当2未知时,用2s替代2,查 t (4, 0.05 ) ,得776.2故所求置信区间为:7.111,3.108,nsxnsx4设某产品的性能指标服从正态分布,从历史资料已知,抽查10 个样品,求得均值为17,取显著性水平,问原假设是否成立解:237.0162.343|10/42017|/|0nxU,由975.021)(,查表得:96.1因为2 3 7.0|U 1.96 ,所以拒绝0H5某零件长度服从正态分布,过去的均值为20.0,现换了新材料,从产品中随机抽取8 个样品,测得的长度为(单位: cm) :20.0, 20.2, 20.1, 20.0, 20.2, 20.3, 19.8, 19.5 问用新材料做的零件平均长度是否起了变化()解:由已知条件可求得:0125.20 x0671.02s1365.0259.0035.0|8/259.0200125.20|/|0nsxT62.2)05.0,9()05.0 , 1(tnt | T | 2.62 接受 H0精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 12 页,共 12 页

    注意事项

    本文(2022年电大工程数学形成性考核册作业【1-4】答案参考小抄 .pdf)为本站会员(H****o)主动上传,淘文阁 - 分享文档赚钱的网站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知淘文阁 - 分享文档赚钱的网站(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于淘文阁 - 版权申诉 - 用户使用规则 - 积分规则 - 联系我们

    本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

    工信部备案号:黑ICP备15003705号 © 2020-2023 www.taowenge.com 淘文阁 

    收起
    展开