尔雅数学思维方式与创新答案(96页).doc
-尔雅数学思维方式与创新答案-第 96 页集合的划分(一)已完成1数学的整数集合用什么字母表示?A、NB、MC、ZD、W我的答案:C2时间长河中的所有日记组成的集合与数学整数集合中的数字是什么对应关系?A、交叉对应B、一一对应C、二一对应D、一二对应我的答案:B3分析数学中的微积分是谁创立的?A、柏拉图B、康托C、笛卡尔D、牛顿-莱布尼茨我的答案:D4黎曼几何属于费欧几里德几何,并且认为过直线外一点有多少条直线与已知直线平行?A、没有直线B、一条C、至少2条D、无数条我的答案:A5最先将微积分发表出来的人是A、牛顿B、费马C、笛卡尔D、莱布尼茨我的答案:D6最先得出微积分结论的人是A、牛顿B、费马C、笛卡尔D、莱布尼茨我的答案:A7第一个被提出的非欧几何学是A、欧氏几何B、罗氏几何C、黎曼几何D、解析几何我的答案:B8代数中五次方程及五次以上方程的解是可以用求根公式求得的。我的答案:×9数学思维方式的五个重要环节:观察抽象探索猜测论证。我的答案:10在今天,牛顿和莱布尼茨被誉为发明微积分的两个独立作者。我的答案:集合的划分(二)已完成1星期日用数学集合的方法表示是什么?A、6R|RZB、7R|RNC、5R|RZD、7R|RZ我的答案:D2将日期集合里星期一到星期日的七个集合求并集能到什么集合?A、自然数集B、小数集C、整数集D、无理数集我的答案:C3在星期集合的例子中,a,b属于同一个子集的充要条件是什么?A、a与b被6除以后余数相同B、a与b被7除以后余数相同C、a与b被7乘以后积相同D、a与b被整数乘以后积相同我的答案:B4集合的性质不包括A、确定性B、互异性C、无序性D、封闭性我的答案:D5A=1,2,B=3,4,AB=A、B、AC、BD、1,2,3,4我的答案:A6A=1,2,B=3,4,C=1,2,3,4则A,B,C的关系A、C=ABB、C=ABC、A=B=CD、A=BC我的答案:A7星期二和星期三集合的交集是空集。我的答案:8空集属于任何集合。我的答案:×9“很小的数”可以构成一个集合。我的答案:×集合的划分(三)已完成1S是一个非空集合,A,B都是它的子集,它们之间的关系有几种?我的答案:2如果是集合S上的一个等价关系则应该具有下列哪些性质?A、反身性B、对称性C、传递性D、以上都有我的答案:D3如果S、M分别是两个集合,SM(a,b)|aS,bM称为S与M的什么?A、笛卡尔积B、牛顿积C、康拓积D、莱布尼茨积我的答案:A4A=1,2,B=2,3,AB=A、B、1,2,3C、AD、B我的答案:B5A=1,2,B=2,3,AB=A、B、2C、AD、B我的答案:B6发明直角坐标系的人是A、牛顿B、柯西C、笛卡尔D、伽罗瓦我的答案:C7集合中的元素具有确定性,要么属于这个集合,要么不属于这个集合。我的答案:8任何集合都是它本身的子集。我的答案:9空集是任何集合的子集。我的答案:集合的划分(四)已完成1设S上建立了一个等价关系,则什么组成的集合是S的一个划分?A、所有的元素B、所有的子集C、所有的等价类D、所有的元素积我的答案:C2设是集合S上的一个等价关系,任意aS,S的子集xS|xa,称为a确定的什么?A、等价类B、等价转换C、等价积D、等价集我的答案:A3如果xa的等价类,则xa,从而能够得到什么关系?A、x=aB、xaC、x的笛卡尔积=a的笛卡尔积D、x的等价类=a的等价类我的答案:D40与0的关系是A、二元关系B、等价关系C、包含关系D、属于关系我的答案:D5元素与集合间的关系是A、二元关系B、等价关系C、包含关系D、属于关系我的答案:D6如果X的等价类和Y的等价类不相等则有XY成立。我的答案:×7A=A我的答案:×8A=我的答案:×等价关系(一)已完成1星期一到星期日可以被统称为什么?A、模0剩余类B、模7剩余类C、模1剩余类D、模3剩余类我的答案:B2星期三和星期六所代表的集合的交集是什么?A、空集B、整数集C、日期集D、自然数集我的答案:A3xa的等价类的充分必要条件是什么?A、x>aB、x与a不相交C、xaD、x=a我的答案:C4设R和S是集合A上的等价关系,则RS的对称性A、一定满足B、一定不满足C、不一定满足D、不可能满足我的答案:5集合A上的一个划分,确定A上的一个关系为A、非等价关系B、等价关系C、对称的关系D、传递的关系我的答案:B6等价关系具有的性质不包括A、反身性B、对称性C、传递性D、反对称性我的答案:D7如果两个等价类不相等那么它们的交集就是空集。我的答案:8整数的同余关系及其性质是初等数论的基础。我的答案:9所有的二元关系都是等价关系。我的答案:×等价关系(二)已完成1a与b被m除后余数相同的等价关系式是什么?A、a+b是m的整数倍B、a*b是m的整数倍C、a-b是m的整数倍D、a是b的m倍我的答案:C2设是集合S的一个等价关系,则所有的等价类的集合是S的一个什么?A、笛卡尔积B、元素C、子集D、划分我的答案:D3如果a与b模m同余,c与d模m同余,那么可以得到什么结论?A、a+c与b+d模m同余B、a*c与b*d模m同余C、a/c与b/d模m同余D、a+c与b-d模m同余我的答案:4设A为3元集合,B为4元集合,则A到B的二元关系有几个我的答案:A5对任何a属于A,A上的等价关系R的等价类aR为A、空集B、非空集C、x|xAD、不确定我的答案:6在4个元素的集合上可定义的等价关系有几个我的答案:7整数集合Z有且只有一个划分,即模7的剩余类。我的答案:×8三角形的相似关系是等价关系。我的答案:9设R和S是集合A上的等价关系,则RS一定是等价关系。我的答案:×模m同余关系(一)已完成1在Zm中规定如果a与c等价类相等,b与d等价类相等,则可以推出什么相等?A、a+c与d+d等价类相等B、a+d与c-b等价类相等C、a+b与c+d等价类相等D、a*b与c*d等价类相等我的答案:C2如果今天是星期五,过了370天是星期几?A、一B、二C、三D、四我的答案:D3在Z7中,4的等价类和6的等价类的和几的等价类相等?A、10的等价类B、3的等价类C、5的等价类D、2的等价类我的答案:B4同余理论的创立者是A、柯西B、牛顿C、高斯D、笛卡尔我的答案:C5如果今天是星期五,过了370天,是星期几A、星期二B、星期三C、星期四D、星期五我的答案:C6整数的四则运算不保“模m同余”的是A、加法B、减法C、乘法D、除法我的答案:D7整数的除法运算是保“模m同余”。我的答案:×8同余理论是初等数学的核心。我的答案:模m同余关系(二)已完成1Zm的结构实质是什么?A、一个集合B、m个元素C、模m剩余环D、整数环我的答案:C2集合S上的一个什么运算是S*S到S的一个映射?A、对数运算B、二次幂运算C、一元代数运算D、二元代数运算我的答案:D3对任意aR,bR,有a+b=b+a=0,则b称为a的什么?A、正元B、负元C、零元D、整元我的答案:B4偶数集合的表示方法是什么?A、2k|kZB、3k|kZC、4k|kZD、5k|kZ我的答案:A5矩阵的乘法不满足哪一规律?A、结合律B、分配律C、交换律D、都不满足我的答案:C6Z的模m剩余类具有的性质不包括A、结合律B、分配律C、封闭律D、有零元我的答案:C7模5的最小非负完全剩余系是A、0,6,7,13,24B、0,1,2,3,4C、.24D、1,2,3,4我的答案:B8同余关系具有的性质不包括A、反身性B、对称性C、传递性D、封闭性我的答案:D9在Zm中a和b的等价类的乘积不等于a,b乘积的等价类。我的答案:×10如果一个非空集合R满足了四条加法运算,而且满足两条乘法运算可以称它为一个环。我的答案:11如果环有一个元素e,跟任何元素左乘右都等于自己,那称这个e是R的单位元。()我的答案:12中国剩余定理又称孙子定理。我的答案:模m剩余类环Zm(一)已完成1Z的模m剩余类环的单位元是我的答案:B2集合的划分,就是要把集合分成一些()。A、子集B、空集C、补集D、并交集我的答案:3设R是一个环,aR,则0·a=A、0B、a我的答案:A4如果一个非空集合R有满足其中任意一个元素和一个元素加和都是R中元素本身,则这个元素称为什么?A、零环B、零数C、零集D、零元我的答案:D5若环R满足交换律则称为什么?A、交换环B、单位环C、结合环D、分配环我的答案:A6环R中的运算应该满足几条加法法则和几条乘法法则?A、3、3B、2、2C、4、2D、2、4我的答案:C7矩阵乘法不满交换律也不满足结合律。我的答案:×8环R中零元乘以任意元素都等于零元。我的答案:9整数的加法是奇数集的运算。我的答案:×10设R是非空集合,R和R的笛卡尔积到R的一个映射就是运算。我的答案:模m剩余类环Zm(二)已完成1在Zm环中一定是零因子的是什么?A、m-1等价类B、0等价类C、1等价类D、m+1等价类我的答案:B2环R中,对于a、cR,且c不为0,如果ac=0,则称a是什么?A、零元B、零集C、左零因子D、归零因子我的答案:C3环R中满足a、bR,如果ab=ba=e(单位元)则称a是什么?A、交换元B、等价元C、可变元D、可逆元我的答案:D4设R是一个环,a,bR,则(-a)·(-b)=A、aB、bC、abD、-ab我的答案:C5设R是一个环,a,bR,则(-a)·b=A、aB、bC、abD、-ab我的答案:D6设R是一个环,a,bR,则a·(-b)=A、aB、bC、abD、-ab我的答案:D7环R中满足a、bR,如果ab=ba=e(单位元),那么其中的b是唯一的。我的答案:8Z的模m剩余类环是有单位元的交换环。我的答案:9一个环有单位元,其子环一定有单位元。我的答案:×环的概念已完成1在Zm剩余类环中没有哪一种元?A、单位元B、可逆元C、不可逆元,非零因子D、零因子我的答案:C2在整数环中只有哪几个是可逆元?A、1、-1B、除了0之外D、正数都是我的答案:A3在模5环中可逆元有几个?我的答案:4Z的模4剩余类环不可逆元的有()个。A、4B、3C、2D、1我的答案:5Z的模2剩余类环的可逆元是我的答案:B6设R是有单位元e的环,aR,有(-e)·a=A、eB、-eC、aD、-a我的答案:D7在有单位元e(不为零)的环R中零因子一定是不可逆元。我的答案:8一个环没有单位元,其子环不可能有单位元。我的答案:×9环的零因子是一个零元。我的答案:×域的概念已完成1当m是什么数的时候,Zm就一定是域?A、复数B、整数C、合数D、素数我的答案:D2素数m的正因数都有什么?A、只有1B、只有mC、1和mD、1到m之间的所有数我的答案:C3最小的数域是什么?A、有理数域B、实数域C、整数域D、复数域我的答案:A4设F是一个有单位元(不为0)的交换环,如果F的每个非零元都是可逆元,那么称F是一个什么?A、积B、域C、函数D、元我的答案:B5属于域的是()。A、(Z,+,·)B、(Zi,+,·)C、(Q,+,·)D、(I,+,·)我的答案:6Z的模p剩余类环是一个有限域,则p是A、整数B、实数C、复数D、素数我的答案:D7不属于域的是()。A、(Q,+,·)B、(R,+,·)C、(C,+,·)D、(Z,+,·)我的答案:8有理数集,实数集,整数集,复数集都是域。我的答案:×9域必定是整环。我的答案:10整环一定是域。我的答案:×整数环的结构(一)已完成1对于a,bZ,如果有cZ,使得a=cb,称b整除a,记作什么?A、baB、b/aC、b|aD、b&a我的答案:C2整数环的带余除法中满足a=qb+r时r应该满足什么条件?A、0<=r<|b|B、1C、0<=rD、r<0我的答案:A3在整数环中没有哪种运算?A、加法B、除法C、减法D、乘法我的答案:4最先对Zi进行研究的人是A、牛顿B、柯西C、高斯D、伽罗瓦我的答案:C5不属于无零因子环的是A、整数环B、偶数环C、高斯整环D、Z6我的答案:6不属于整环的是A、ZB、ZiC、Z2D、Z6我的答案:7整数环是具有单位元的交换环。我的答案:8整环是无零因子环。我的答案:9右零因子一定是左零因子。我的答案:×整数环的结构(二)已完成1在整数环中若c|a,c|b,则c称为a和b的什么?A、素数B、合数C、整除数D、公因数我的答案:D2整除没有哪种性质?A、对称性B、传递性C、反身性D、都不具有我的答案:3a与0 的一个最大公因数是什么?C、aD、2a我的答案:C4不能被5整除的数是我的答案:C5能被3整除的数是我的答案:B6整环具有的性质不包括A、有单位元B、无零因子C、有零因子D、交换环我的答案:C7在整数环的整数中,0是不能作为被除数,不能够被整除的。我的答案:×8整除关系是等价关系。我的答案:×9若n是奇数,则8|(n2-1)。我的答案:整数环的结构(三)已完成10与0的最大公因数是什么?C、任意整数D、不存在我的答案:2探索里最重要的第一步是什么?A、实验B、直觉判断C、理论推理D、确定方法我的答案:3对于a,bZ,如果有a=qb+r,d满足什么条件时候是a与b的一个最大公因数?A、d是a与r的一个最大公因数B、d是q与r的一个最大公因数C、d是b与q的一个最大公因数D、d是b与r的一个最大公因数我的答案:D4gac(234,567)=A、我的答案:C5若a=bq+r,则gac(a,b)=A、gac(a,r)B、gac(a,q)C、gac(b,r)D、gac(b,q)我的答案:6gac(126,27)=我的答案:C7对于整数环,任意两个非0整数a,b一定具有最大公因数。我的答案:8a是a与0的一个最大公因数。我的答案:90是0与0的一个最大公因数。我的答案:整数环的结构(四)已完成1如果d是被除数和除数的一个最大公因数也是哪两个数的一个最大公因数?A、被除数和余数B、余数和1C、除数和余数D、除数和0我的答案:C2对于整数环,任意两个非0整数a,b一定具有最大公因数可以用什么方法求?A、分解法B、辗转相除法C、十字相乘法D、列项相消法我的答案:B3对于a与b的最大公因数d存在u,v满足什么等式?A、d=ua+vbB、d=uavbC、d=ua/vbD、d=uav-b我的答案:4gcd(13,8)=我的答案:A5gcd(56,24)=我的答案:D6gac(13,39)=我的答案:C7用带余除法对被除数进行替换时候可以无限进行下去。我的答案:×8欧几里得算法又称辗转相除法。我的答案:9计算两个数的最大公因子最有效的方法是带余除法。我的答案:×整数环的结构(五)已完成1若a,bZ,且不全为0,那么他们的最大公因数有几个?我的答案:D2若a,bZ,它们的最大公因数在中国表示为什么?A、a,bB、a,bC、(a,b)D、gcd(a,b)×我的答案:3如果a,b互素,则存在u,v与a,b构成什么等式?A、1=uavbB、1=ua+vbC、1=ua/vb×D、1=uav-b我的答案:4在Z中,若a|bc,且(a,b)=1则可以得到什么结论?A、a|cB、(a,c)=1×C、ac=1D、a|c=1我的答案:5若(a,b)=1,则a与b的关系是A、相等B、大于C、小于D、互素我的答案:D6由b|ac及gac(a,b)=1有A、a|bB、a|cC、b|cD、b|a×我的答案:7若a与b互素,有A、(a,b)=0B、(a,b)=1C、(a,b)=aD、(a,b)=b我的答案:B8在整数环中若(a,b)=1,则称a,b互素。我的答案:9在Z中,若a|c,b|c,且(a,b)=1则可以a|bc.我的答案:×100与0的最大公因数只有一个是0。我的答案:11任意两个非0的数不一定存在最大公因数。我的答案:×整数环的结构(六)已完成1在Z中若(a,c)=1,(b,c)=1,则可以得出哪两个数是素数?A、(abc,a)=1B、(ac,bc)=1C、(abc,b)=1D、(ab,c)=1我的答案:D2在所有大于0的整数中共因素最少的数是什么?A、所有奇数B、所有偶数D、所有素数×我的答案:3对于任意a,bZ,若p为素数,那么p|ab可以推出什么?A、p|aB、p|bC、p|abD、以上都可以我的答案:D4对于任意aZ,若p为素数,那么(p,a)等于多少?B、1或pC、pD、1,a,pa我的答案:5p是素数,若p|ab,(p,a)=1可以推出A、p|aB、p|bC、(p,b)=1×D、(p,ab)=1我的答案:6正因数最少的数是A、整数B、实数C、复数D、素数我的答案:D7若(a,c)=1,(b,c)=1则(ab,c)=B、aC、bD、c我的答案:A8所有大于1的素数所具有的公因数的个数都是相等的。我的答案:9任意数a与素数p的只有一种关系即p|a。我的答案:×10a与b互素的充要条件是存在u,vZ使得au+bv=1。我的答案:整数环的结构(七)已完成1素数的特性总共有几条?我的答案:2.C任一个大于1的整数都可以唯一地分解成什么的乘积?A、有限个素数的乘积B、无限个素数的乘积C、有限个合数的乘积D、无限个合数的乘积我的答案:A3素数的特性之间的相互关系是什么样的?A、单独关系B、不可逆C、不能单独运用D、等价关系我的答案:D4p与任意数a有(p,a)=1或p|a的关系,则p是A、整数B、实数C、复数D、素数我的答案:D5p不能分解成比p小的正整数的乘积,则p是A、整数B、实数C、复数D、素数我的答案:D61是A、素数B、合数C、有理数D、无理数我的答案:C7素数P能够分解成比P小的正整数的乘积。我的答案:×8合数都能分解成有限个素数的乘积。我的答案:9p是素数则p的正因子只有P。我的答案:×Zm的可逆元(一)已完成1在Zm中,等价类a与m满足什么条件时可逆?A、互合B、相反数C、互素D、不互素我的答案:C2Z8中的零因子都有哪些?A、1、3、5、7×B、2、4、6、0C、1、2、3、4D、5、6、7、8我的答案:B3模m剩余环中可逆元的判定法则是什么?A、m是否为素数B、a是否为素数C、a与m是否互合D、a与m是否互素我的答案:D4Z5的零因子是我的答案:A5不属于Z8的可逆元的是我的答案:B6Z6的可逆元是我的答案:B7在Zm中等价类a与m不互素时等价环a是零因子。我的答案:8p是素数,则Zp一定是域。我的答案:9Zm的每个元素是可逆元或者是零因子。我的答案:Zm的可逆元(二)已完成1Z10的可逆元是我的答案:C2Z9的可逆元是我的答案:C3在Z91中等价类元素83的可逆元是哪个等价类?我的答案:C4当p为素数时候,Zp一定是什么?A、域B、等价环C、非交换环D、不可逆环我的答案:A5不属于Z7的可逆元是我的答案:6p是素数,在Zp中单位元的多少倍等于零元B、p+1C、p-1D、p我的答案:7Z91中等价类34是零因子。我的答案:×8Z81中,9是可逆元。我的答案:×9Z91中,34是可逆元。我的答案:模P剩余类域已完成1在域F中,e是单位元,对任意n,n为正整数都有ne不为0,则F的特征是什么?B、fC、pD、任意整数我的答案:A2在R中,n为正整数,当n为多少时n1可以为零元?C、n>1000D、无论n为多少都不为零元我的答案:D3在域F中,e是单位元,存在n,n为正整数使得ne=0成立的正整数n是什么?A、合数B、素数C、奇数D、偶数我的答案:B4任一数域的特征为C、eD、无穷我的答案:A5设域F的单位元e,存在素数p使得pe=0,而0lp,le不为0时,则F的特征为B、pC、eD、无穷我的答案:B6设域F的单位元e,对任意的nN都有ne不等于0时,则F的特征为C、eD、无穷我的答案:A7任一数域的特征都为0,Zp的特征都为素数p。我的答案:8设域F的单位元e,对任意的nN有ne不等于0。我的答案:9设域F的单位元e,存在素数p使得pe=0。我的答案:域的特征(一)已完成1Cpk=p(p-1)(p-k-1)/k!,其中1<=k< p,则(K!,p)等于多少?C、kp×D、p我的答案B:2域F的特征为p,对于任一aF,pa等于多少?B、pD、a我的答案:C3在域F中,设其特征为2,对于任意a,bF,则(a+b)2 等于多少A、2(a+b)B、a2C、b2D、a2+b2我的答案:D4设域F的特征为素数p,对任意aF,有pa=A、pB、aD、无穷我的答案:C5设域F的特征为2,对任意的a,bF,有(a+b)2=A、a+bB、aC、bD、a2+b2我的答案:D6特征为2的域是A、ZB、Z2C、Z3D、Z5我的答案:B7在域F中,设其特征为p,对于任意a,bF,则(a+b)P 等于ap+bp我的答案:8设域F的特征为素数p,对任意的a,bF,有(a+b)p=ap+bp。我的答案:9设域F的特征为3,对任意的a,bF,有(a+b)2=a2+b2。我的答案:×域的特征(二)已完成1设p是素数,对于任一aZ ,ap模多少和a同余?A、aB、所有合数C、PD、所有素数我的答案:C2用数学归纳法:域F的特征为素数P,则可以得到(a1+as)p等于什么?A、aspB、apC、psD、a1P+asP我的答案:D36813模13和哪个数同余?我的答案:A46813?(mod13)我的答案:C5设p是素数,则(p-1)!?(modp)D、p我的答案:A6费马小定理中规定的a是任意整数,包括正整数和负整数。我的答案:×7设p是素数,则对于任意的整数a,有apa(modp)。我的答案:89877是素数。我的答案:×中国剩余定理(一)已完成1首先证明了一次同余数方程组的解法的是我国哪个朝代的数学家?A、汉朝B、三国C、唐朝D、南宋我的答案:D2一般的中国军队的一个连队有多少人?A、30多个B、50多个C、100多个D、300多个我的答案:C3关于军队人数统计,丘老师列出的方程叫做什么?A、一次同余方程组B、三元一次方程组C、一元三次方程组D、三次同余方程组我的答案:A4中国古代求解一次同余式组的方法是A、韦达定理B、儒歇定理C、孙子定理D、中值定理我的答案:C5孙子问题最先出现在哪部著作中A、海岛算经B、五经算术C、孙子算经D、九章算术我的答案:C6剩余定理是哪个国家发明的A、古希腊B、古罗马C、古埃及D、中国我的答案:D7一次同余方程组在Z中是没有解的。我的答案:×8“韩信点兵”就是初等数论中的解同余式。我的答案:9同余式组中,当各模两两互素时一定有解。我的答案:中国剩余定理(二)已完成1一次同余方程组最早的描述是在哪本著作里?A、九章算术B、孙子算经C、解析几何D、微分方程我的答案:B2最早给出一次同余方程组抽象算法的是谁?A、祖冲之B、孙武C、牛顿D、秦九识我的答案:D3一次同余方程组(模分别是m1,m2,m3)的全部解是什么?A、km1m2m3B、Cm1m2m3C、C+km1m2m3D、Ckm1m2m3我的答案:C4n被3,4,7除的余数分别是1,3,5且n小于200,则n=我的答案:D5n被3,5,7除的余数分别是1,2,3且n小于200,则n=我的答案:C6n被3,5,11除的余数分别是1,3,3且n小于100,则n=我的答案:C7欧拉在1743年,高斯在1801年分别也给出了同余方程组的解法。我的答案:8某数如果加上5就能被6整除,减去5就能被7整除,这个数最小是20。我的答案:×9一个数除以5余3,除以3余2,除以4余1.求该数的最小值53。我的答案:欧拉函数(一)已完成1Zp是一个域那么可以得到(p)等于多少?C、pD、p-1我的答案:D2(m)等于什么?A、集合1,2m-1中与m互为合数的整数的个数B、集合1,2m-1中奇数的整数的个数C、集合1,2m-1中与m互素的整数的个数D、集合1,2m-1中偶数的整数的个数我的答案:C3Zm中所有的可逆元组成的集合记作什么?A、Zm*B、ZmC、ZMD、Z*我的答案:A4Z5的可逆元个数是我的答案:D5Z7的可逆元个数是我的答案:D6Z3的可逆元个数是我的答案:C7求取可逆元个数的函数(m)是高斯函数。我的答案:×8在Zm中,a是可逆元的充要条件是a与m互素。我的答案:9Zm中可逆元个数记为(m),把(m)称为欧拉函数。我的答案:欧拉函数(二)已完成1当m为合数时,令m=24,那么(24)等于多少?我的答案:C2设p为素数,r为正整数,=1,2,3,pr中与pr不互为素数的整数个数有多少个?A、pr-1B、pC、rD、pr我的答案:A3(24)等于哪两个素数欧拉方程的乘积?A、(2)*(12)B、(2)*(4)C、(4)*(6)D、(3)*(8)我的答案:D4(9)=我的答案:C5(4)=D、我的答案:B6(8)=我的答案:B7(12)=(3*4)=(2*6)=(3)*(4)=(2)*(6)我的答案:×8设p是素数,r是正整数,则(pr)=(p-1)p(r-1)。我的答案:9设p是素数,则(p)=p。我的答案:×欧拉函数(三)已完成1欧拉方程(m2)(m1)之积等于哪个环中可逆元的个数?A、Zm1 Zm2B、Zm1C、Zm2D、Zm1*m2我的答案:A2Zm1*Zm2的笛卡尔积被称作是Zm1和Zm2的什么?A、算术积B、集合C、直和D、平方积我的答案:C3设m=m1m2,且(m1,m2)=1,则(m)等于什么?A、(m1)B、(m2)(m1)C、(m1)*(m1)D、(m2)*(m2)我的答案:B4(24)=我的答案:C5(10)=我的答案:D6(12)=我的答案:D7设m1,m2为素数,则Zm1*Zm2是一个具有单位元的交换环。我的答案:8设m=m1m2,且(m1,m2)=1则(m)=(m1)(m2)。我的答案:9(24)=(4)(6)我的答案:×欧拉函数(四)已完成1有序元素对相等的映射是一个什么映射?A、不完全映射B、不对等映射C、单射D、散射我的答案:C2若有Zm*到Zm1 Zm2的一个什么,则|Zm*|=|Zm1 Zm2*|成立A、不对应关系B、互补C、互素D、双射我的答案:D3(7)=A、(1)(6)B、(2)(5) C、(2)(9)D、(3)(4)我的答案:C4(6)=A、(1)(5)B、(3)(3)C、(2)(3)D、(3)(4)我的答案:C5(3)(4)=A、(3)B、(4)C、(12)D、(24)我的答案:C6如果m=m1m2,且(m1,m2)=1,有m|x-y,则m1|x-y,m2|x-y.我的答案:7(N)是欧拉函数,若N2,则(N)必定是偶数。我的答案:8(4)=(2)(2)我的答案:×欧拉函数(五)已完成1a是Zm的可逆元的等价条件是什么?A、(a)是Zm的元素B、(a)是Zm1的元素C、(a)是Zm2的元素D、(a)是Zm1,Zm2直和的可逆元我的答案:D2单射在满足什么条件时是满射?A、两集合元素个数相等B、两集交集为空集C、两集合交集不为空集D、两集合元素不相等我的答案:A3若映射既满足单射,又满足满射,那么它是什么映射?A、不完全映射B、双射C、集体映射D、互补映射我的答案:B4属于单射的是A、x x2B、x cosxC、x x4 xD、x 2x + 1我的答案:D5不属于单射的是A、x ln xB、x exC、x x3 xD、x 2x + 1我的答案:C6数学上可以分三类函数不包括A、单射B、满射C、双射D、反射我的答案:D7映射是满足乘法运算,即(xy)=(x)(y)。我的答案:8对任一集合X,X上的恒等函数为单射的。我的答案:9一个函数不可能既是单射又是满射。我的答案:×欧拉函数(六)已完成1根据欧拉方程的算法(1800)等于多少?我的答案:B2欧拉方程(m)=(P1r1)(Psrs)等于什么?A、P1r1-1(P1-1)Psrs-1(Ps-1)B、P1r1-1Psrs-1C、(P1-1)(Ps-1)D、P1(P1-1)Ps(Ps-1)我的答案:A3设M=P1r1Psrs,其中P1,P2需要满足的条件是什么?A、两两不等的合数B、两两不等的奇数C、两两不等的素数D、两两不等的偶数我的答案:C4不属于满射的是A、x x+1B、x x