带电粒子在磁场中偏转历年高考题详解(9页).doc
-带电粒子在磁场中偏转历年高考题详解-第 9 页7.(08四川卷)24如图,一半径为R的光滑绝缘半球面开口向下,固定在水平面上。整个空间存在匀强磁场,磁感应强度方向竖直向下。一电荷量为q(q0)、质量为m的小球P在球面上做水平的匀速圆周运动,圆心为O。球心O到该圆周上任一点的连线与竖直方向的夹角为(0。为了使小球能够在该圆周上运动,求磁感应强度大小的最小值及小球P相应的速率。重力加速度为g。解析:据题意,小球P在球面上做水平的匀速圆周运动,该圆周的圆心为O。P受到向下的重力mg、球面对它沿OP方向的支持力N和磁场的洛仑兹力 fqvB 式中v为小球运动的速率。洛仑兹力f的方向指向O。根据牛顿第二定律由式得由于v是实数,必须满足0 由此得B 可见,为了使小球能够在该圆周上运动,磁感应强度大小的最小值为此时,带电小球做匀速圆周运动的速率为 由式得8.(08重庆卷)25.题25题为一种质谱仪工作原理示意图.在以O为圆心,OH为对称轴,夹角为2的扇形区域内分布着方向垂直于纸面的匀强磁场.对称于OH轴的C和D分别是离子发射点和收集点.CM垂直磁场左边界于M,且OM=d.现有一正离子束以小发散角(纸面内)从C射出,这些离子在CM方向上的分速度均为v0.若该离子束中比荷为的离子都能汇聚到D,试求:(1)磁感应强度的大小和方向(提示:可考虑沿CM方向运动的离子为研究对象);(2)离子沿与CM成角的直线CN进入磁场,其轨道半径和在磁场中的运动时间;(3)线段CM的长度.解析:(1)设沿CM方向运动的离子在磁场中做圆周运动的轨道半径为R由R=d得B磁场方向垂直纸面向外(2)设沿CN运动的离子速度大小为v,在磁场中的轨道半径为R,运动时间为t由vcos=v0 得vR=方法一:设弧长为st=s=2(+)×Rt=(09年全国卷)26(21分)如图,在x轴下方有匀强磁场,磁感应强度大小为B,方向垂直于x y平面向外。P是y轴上距原点为h的一点,N0为x轴上距原点为a的一点。A是一块平行于x轴的挡板,与x轴的距离为,A的中点在y轴上,长度略小于。带点粒子与挡板碰撞前后,x方向的分速度不变,y方向的分速度反向、大小不变。质量为m,电荷量为q(q>0)的粒子从P点瞄准N0点入射,最后又通过P点。不计重力。求粒子入射速度的所有可能值。解析:设粒子的入射速度为v,第一次射出磁场的点为,与板碰撞后再次进入磁场的位置为.粒子在磁场中运动的轨道半径为R,有粒子速率不变,每次进入磁场与射出磁场位置间距离保持不变有粒子射出磁场与下一次进入磁场位置间的距离始终不变,与设粒子最终离开磁场时,与档板相碰n次(n=0、1、2、3).若粒子能回到P点,由对称性,出射点的x坐标应为-a,即由两式得若粒子与挡板发生碰撞,有联立得n<3联立得把代入中得(09年全国卷)25. (18分)如图,在宽度分别为和的两个毗邻的条形区域分别有匀强磁场和匀强电场,磁场方向垂直于纸面向里,电场方向与电、磁场分界线平行向右。一带正电荷的粒子以速率v从磁场区域上边界的P点斜射入磁场,然后以垂直于电、磁场分界线的方向进入电场,最后从电场边界上的Q点射出。已知PQ垂直于电场方向,粒子轨迹与电、磁场分界线的交点到PQ的距离为d。不计重力,求电场强度与磁感应强度大小之比及粒子在磁场与电场中运动时间之比。答案:解析:本题考查带电粒子在有界磁场中的运动。设粒子的质量和所带正电荷分别为m和q,由洛仑兹力公式和牛顿第二定律得设为虚线与分界线的交点,则粒子在磁场中的运动时间为式中有粒子进入电场后做类平抛运动,其初速度为v,方向垂直于电场.设粒子的加速度大小为a,由牛顿第二定律得由运动学公式有 由式得由式得(09年天津卷)11.(18分)如图所示,直角坐标系xOy位于竖直平面内,在水平的x轴下方存在匀强磁场和匀强电场,磁场的磁感应为B,方向垂直xOy平面向里,电场线平行于y轴。一质量为m、电荷量为q的带正电的小球,从y轴上的A点水平向右抛出,经x轴上的M点进入电场和磁场,恰能做匀速圆周运动,从x轴上的N点第一次离开电场和磁场,MN之间的距离为L,小球过M点时的速度方向与x轴的方向夹角为.不计空气阻力,重力加速度为g,求(1) 电场强度E的大小和方向;(2) 小球从A点抛出时初速度v0的大小;(3) A点到x轴的高度h.答案:(1),方向竖直向上 (2) (3)(2)小球做匀速圆周运动,O为圆心,MN为弦长,如图所示。设半径为r,由几何关系知小球做匀速圆周运动的向心力由洛仑兹力白日提供,设小球做圆周运动的速率为v,有由速度的合成与分解知由式得(3)设小球到M点时的竖直分速度为vy,它与水平分速度的关系为由匀变速直线运动规律由式得(09年山东卷)25(18分)如图甲所示,建立Oxy坐标系,两平行极板P、Q垂直于y轴且关于x轴对称,极板长度和板间距均为l,第一四象限有磁场,方向垂直于Oxy平面向里。位于极板左侧的粒子源沿x轴间右连接发射质量为m、电量为+q、速度相同、重力不计的带电粒子在03t时间内两板间加上如图乙所示的电压(不考虑极边缘的影响)。已知t=0时刻进入两板间的带电粒子恰好在t0时,刻经极板边缘射入磁场。上述m、q、l、l0、B为已知量。(不考虑粒子间相互影响及返回板间的情况)(1)求电压U的大小。(2)求时进入两板间的带电粒子在磁场中做圆周运动的半径。(3)何时把两板间的带电粒子在磁场中的运动时间最短?求此最短时间。图乙图甲(3)时刻进入两极板的带电粒子在磁场中运动时间最短。带电粒子离开磁场时沿y轴正方向的分速度为,设带电粒子离开电场时速度方向与y轴正方向的夹角为,则,联立式解得,带电粒子在磁场运动的轨迹图如图所示,圆弧所对的圆心角为,所求最短时间为,带电粒子在磁场中运动的周期为,联立以上两式解得。考点:带电粒子在匀强电场、匀强磁场中的运动。×10-3T,在X轴上距坐标原点L=×104m/s的速率从P处射入磁场,若粒子在y轴上距坐标原点L=的M处被观测到,且运动轨迹半径恰好最小,设带电粒子的质量为m,电量为q,不记其重力。(1)求上述粒子的比荷;(2)如果在上述粒子运动过程中的某个时刻,在第一象限内再加一个匀强电场,就可以使其沿y轴正方向做匀速直线运动,求该匀强电场的场强大小和方向,并求出从粒子射入磁场开始计时经过多长时间加这个匀强电场;(3)为了在M处观测到按题设条件运动的上述粒子,在第一象限内的磁场可以局限在一个矩形区域内,求此矩形磁场区域的最小面积,并在图中画出该矩形。答案(1)××C/kg);(2) ; (3)解析:第(1)问本题考查带电粒子在磁场中的运动。第(2)问涉及到复合场(速度选择器模型)第(3)问是带电粒子在有界磁场(矩形区域)中的运动。(1)设粒子在磁场中的运动半径为r。如图甲,依题意M、P连线即为该粒子在磁场中作匀速圆周运动的直径,由几何关系得由洛伦兹力提供粒子在磁场中作匀速圆周运动的向心力,可得联立并代入数据得××C/kg) (2)设所加电场的场强大小为E。如图乙,当粒子子经过Q点时,速度沿y轴正方向,依题意,在此时加入沿x轴正方向的匀强电场,电场力与此时洛伦兹力平衡,则有代入数据得所加电场的长枪方向沿x轴正方向。由几何关系可知,圆弧PQ所对应的圆心角为45°,设带点粒子做匀速圆周运动的周期为T,所求时间为t,则有联立并代入数据得(3)如图丙,所求的最小矩形是,该区域面积联立并代入数据得矩形如图丙中(虚线)(09年浙江卷)25.(22分)如图所示,x轴正方向水平向右,y轴正方向竖直向上。在xOy平面内有与y轴平行的匀强电场,在半径为R的圆内还有与xOy平面垂直的匀强磁场。在圆的左边放置一带电微粒发射装置,它沿x轴正方向发射出一束具有相同质量m、电荷量q(q>0)和初速度v的带电微粒。发射时,这束带电微粒分布在0<y<2R的区间内。已知重力加速度大小为g。(1)从A点射出的带电微粒平行于x轴从C点进入有磁场区域,并从坐标原点O沿y轴负方向离开,求点场强度和磁感应强度的大小和方向。(2)请指出这束带电微粒与x轴相交的区域,并说明理由。(3)若这束带电微粒初速度变为2v,那么它们与x轴相交的区域又在哪里?并说明理由。答案:(1);方向垂直于纸面向外;(2)见解析;(3)与x同相交的区域范围是x>0。解析:本题考查带电粒子在复合场中的运动。带电粒子平行于x轴从C点进入磁场,说明带电微粒所受重力和电场力平衡。设电场强度大小为E,由可得 方向沿y轴正方向。带电微粒进入磁场后,将做圆周运动。 且 r=R如图(a)所示,设磁感应强度大小为B。由得 方向垂直于纸面向外(2)这束带电微粒都通过坐标原点。方法一:从任一点P水平进入磁场的带电微粒在磁场中做半径为R的匀速圆周运动,其圆心位于其正下方的Q点,如图b所示,这束带电微粒进入磁场后的圆心轨迹是如图b的虚线半圆,此圆的圆心是坐标原点为。方法二:从任一点P水平进入磁场的带电微粒在磁场中做半径为R的匀速圆周运动。如图b示,高P点与O点的连线与y轴的夹角为,其圆心Q的坐标为(-Rsin,Rcos),圆周运动轨迹方程为得 x=0 x=-Rsin y=0 或 y=R(1+cos)(3)这束带电微粒与x轴相交的区域是x>0带电微粒在磁场中经过一段半径为r的圆弧运动后,将在y同的右方(x>0)的区域离开磁场并做匀速直线运动,如图c所示。靠近M点发射出来的带电微粒在突出磁场后会射向x同正方向的无穷远处国靠近N点发射出来的带电微粒会在靠近原点之处穿出磁场。所以,这束带电微粒与x同相交的区域范围是x>0.(09年江苏卷)14.(16分)1932年,劳伦斯和利文斯设计出了回旋加速器。回旋加速器的工作原理如图所示,置于高真空中的D形金属盒半径为R,两盒间的狭缝很小,带电粒子穿过的时间可以忽略不计。磁感应强度为B的匀强磁场与盒面垂直。A处粒子源产生的粒子,质量为m、电荷量为+q ,在加速器中被加速,加速电压为U。加速过程中不考虑相对论效应和重力作用。(1)求粒子第2次和第1次经过两D形盒间狭缝后轨道半径之比;(2)求粒子从静止开始加速到出口处所需的时间t;(3)实际使用中,磁感应强度和加速电场频率都有最大值的限制。若某一加速器磁感应强度和加速电场频率的最大值分别为Bm、fm,试讨论粒子能获得的最大动能E。解析:(2)设粒子到出口处被加速了n圈解得 (3)加速电场的频率应等于粒子在磁场中做圆周运动的频率,即当磁场感应强度为Bm时,加速电场的频率应为粒子的动能当时,粒子的最大动能由Bm决定解得当时,粒子的最大动能由fm决定解得