工程流体力学(水力学)闻德第五章_实际流体动力学基础课后答案(11页).doc
-
资源ID:36341179
资源大小:3.33MB
全文页数:11页
- 资源格式: DOC
下载积分:15金币
快捷下载
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
工程流体力学(水力学)闻德第五章_实际流体动力学基础课后答案(11页).doc
-工程流体力学(水力学)闻德第五章_实际流体动力学基础课后答案-第 44 页工程流体力学闻德课后习题答案第五章 实际流体动力学基础51设在流场中的速度分布为ux =2ax,uy =-2ay,a为实数,且a>0。试求切应力xy、yx和附加压应力p´x、p´y以及压应力px、py。解:52 设例1中的下平板固定不动,上平板以速度v沿x轴方向作等速运动(如图所示),由于上平板运动而引起的这种流动,称柯埃梯(Couette)流动。试求在这种流动情况下,两平板间的速度分布。(请将时的这一流动与在第一章中讨论流体粘性时的流动相比较)解:将坐标系ox轴移至下平板,则边界条件为y,;,。 由例1中的(11)式可得 ()当时,速度为直线分布,这种特殊情况的流动称简单柯埃梯流动或简单剪切流动。它只是由于平板运动,由于流体的粘滞性带动流体发生的流动。 当时,即为一般的柯埃梯流动,它是由简单柯埃梯流动和泊萧叶流动叠加而成,速度分布为 ()式中 ()当p时,沿着流动方向压强减小,速度在整个断面上的分布均为正值;当p时,沿流动方向压强增加,则可能在静止壁面附近产生倒流,这主要发生p的情况53 设明渠二维均匀(层流)流动,如图所示。若忽略空气阻力,试用纳维斯托克斯方程和连续性方程,证明过流断面上的速度分布为,单宽流量。解:(1)因是恒定二维流动,由纳维斯托克斯方程和连续性方程可得,。因是均匀流,压强分布与x无关,因此,纳维斯托克斯方程可写成因ux只与z方向有关,与x无关,所以偏微分可改为全微分,则,积分得 ,当,;,得,(2)。54 设有两艘靠得很近的小船,在河流中等速并列向前行驶,其平面位置,如图a所示。(1)试问两小船是越行越靠近,甚至相碰撞,还是越行越分离。为什么?若可能要相碰撞,则应注意,并事先设法避免。(2)设小船靠岸时,等速沿直线岸平行行驶,试问小船是越行越靠岸,还是越离岸,为什么?(3)设有一圆筒在水流中,其平面位置如图b所示。当圆筒按图中所示方向(即顺时针方向)作等角转速旋转,试问圆筒越流越靠近D侧,还是C侧,为什么?解:(1)取一通过两小船的过流断面,它与自由表面的交线上各点的应相等。现两船间的流线较密,速度要增大些,压强要减小些,而两小船外侧的压强相对要大一些,致使将两小船推向靠近,越行越靠近,甚至可能要相碰撞。事先应注意,并设法避免、预防。(2)小船靠岸时,越行越靠近岸,理由基本上和上面(1)的相同。(3)因水流具有粘性,圆筒旋转后使靠D侧流速增大,压强减小,致使越流越靠近D侧。5-5 设有压圆管流(湍流),如图所示,已知过流断面上的流速分布为,为管轴处的最大流速。试求断面平均流速v(以umax表示)和动能修正系数值。解:设,56设用一附有水银压差计的文丘里管测定倾斜管内恒定水流的流量,如图所示。已知d1 =,d2 =,压差计读数h,文丘里管流量系数 =0.98,试求流量Q。解:由伯努利方程得()由连续性方程得 ()由压差计得 ()将式()()代入()得57设用一附有水银压差计的文丘里管测定铅垂管内恒定水流流量,如图所示。已知d1 =,d2 =,压差计读数h,文丘里管流量系数µ =0.98,试求流量Q请与习题56、例54比较,在相同的条件下,流量Q与文丘里管倾斜角是否有关。解:与习题6的解法相同,结果亦相同,(解略)它说明流量Q与倾斜角无关58利用文丘里管的喉道负压抽吸基坑中的积水,如图所示。已知d1 =50mm,d2 =100mm,h =2m,能量损失略去不计,试求管道中的流量至少应为多大,才能抽出基坑中的积水。解:对过流断面1、写伯努利方程,得59密度为860kg/m3的液体,通过一喉道直径d1 =250mm的短渐扩管排入大气中,如图所示。已知渐扩管排出口直径d2 =750mm,当地大气压强为92kPa,液体的汽化压强(绝对压强)为5kPa,能量损失略去不计,试求管中流量达到多大时,将在喉道发生液体的汽化。解:对过流断面11,22写伯努利方程管道中流量大于3/s时,将在喉道发生液体的汽化。510设一虹吸管布置,如图所示。已知虹吸管直径d =150mm,喷嘴出口直径d2 =50mm,水池水面面积很大,能量损失略去不计。试求通过虹吸管的流量Q和管内A、B、C、D各点的压强值。解:对过流断面1-1,2-2写伯努利方程,可得由连续性方程得 对过流断面1-1、A-A写伯努利方程,可得同上,可得, 111122511 设有一实验装置,如图所示。已知当闸阀关闭时,点A处的压力表读数为27.44×104Pa(相对压强);闸阀开启后,压力表读数为5.88×104Pa;水管直径d =,水箱水面面积很大,能量损失略去不计,试求通过圆管的流量Q。解:由题意得,水箱高度是。对过流断面1-1,2-2,写伯努利方程可得:512 设有一管路,如图所示。已知A点处的管径dA =,压强pA =70kPa;B点处的管径dB =,压强pB =40 kPa,流速vB =1m/s;A、B两点间的高程差z =1m。试判别A、B两点间的水流方向,并求出其间的能量损失。解:, H2O水流由A点流向B点。513 一消防水枪,从水平线向上倾角 =30°,水管直径d1 =150mm,喷嘴直径d2 =75mm,压力表M读数为××105Pa,能量损失略去不计,且假定射流不裂碎分散。试求射流喷出流速v2和喷至最高点的高度H及其在最高点的射流直径d3。(断面1-1,2-2间的高程差略去不计,如图所示。)由自由落体公式得5-14 一铅垂立管,下端平顺地与两水平的平行圆盘间的通道相联,如图所示。已知立管直径d =50mm,圆盘的半径R =,两圆盘之间的间隙 =,立管中的平均流速 =3m/s,A点到下圆盘顶面的高度H=1m。试求A、B、C、D各点的压强值。能量损失都略去不计,且假定各断面流速均匀分布。解:由连续性方程得由伯努利方程得:,5-15 水从铅垂立管下端射出,射流冲击一水平放置的圆盘,如图所示。已知立管直径D =50mm,圆盘半径R =150mm,水流离开圆盘边缘的厚度 =1mm,试求流量Q和水银压差计中的读数h。能量损失略去不计,且假定各断面流速分布均匀。解:设立管出口流速为,水流离开圆盘边缘的流速为,根据连续性方程得由伯努利方程得水银压差计反映盘面上的驻点压强p,即516 设水流从左水箱经过水平串联管路流出,在第二段管道有一半开的闸阀,管路末端为收缩的圆锥形管嘴,如图所示。已知通过管道的流量Q =3/s、第一、二段管道的直径、长度分别为d1 =、l1 =25m和d2 =、l2 =10m,管嘴直径d3 =,水流由水箱进入管道的进口局部损失系数j1 0.5,第一管段的沿程损失系数f1 =6.1,第一管道进入第二管道的突然收缩局部损失系数j2 0.15,第二管段的沿程损失系数f2 ,闸阀的局部损失系数j3 2.0,管嘴的局部损失系数j4 0.1(所给局部损失系数都是对局部损失后的断面平均速度而言)。试求水箱中所需水头H,并绘出总水头线和测压管水头线。解:对断面00,33写总流伯努利方程,得 (1) (2) (3)将有关已知值代入(3)、(2)式,得H=速度水头:损失水头:校核:总水头线和测压管水头线分别如图中实线和虚线所示。517 设水流在宽明渠中流过闸门(二维流动),如图所示。已知H 2m,h ,若不计能量损失,试求单宽(b 1m)流量q,并绘出总水头线和测压管水头线。解:由伯努利方程得 (1)由连续性方程得 (2)联立解(1)(2)式得 ,/s, m/s/sqA1 m3/s4.24 m3/s总水头线,测压管水头线分别如图中虚线,实线所示。518 水箱中的水通过一铅垂渐扩管满流向下泄去,如图所示。已知高程3 0,2,1 ,直径d2 50mm,d3 80mm,水箱水面面积很大,能量损失略去不计,试求真空表M的读数。若d3不变,为使真空表读数为零,试求d2应为多大。真空表装在 断面处。解:,对2、3断面列能量方程真空表读数为41.92×103为使P2=0,再对2、3断面列能量方程,=/s因d2>d3,所以应改为渐缩形铅垂管,才能使真空表读数为零。519 设水流从水箱经过铅垂圆管流入大气,如图所示。已知管径d =常数,H =常数<10m,水箱水面面积很大,能量损失略去不计,试求管内不同h处的流速和压强变化情况,绘出总水头线和测压管水头线,并指出管中出现负压(真空)的管段。解:(1)由总流连续方程可知,管内不同h处的流速不变。管内流速可由总流伯努利方程求得。对过流断面00、11写伯努利方程可得(2)对过流断面22、00写总流伯努利方程可得因为H>h,所以 得负值的相对压强值,出现真空。管内不同h处的真空度hv变化规律如图点划线所示。(3)对轴绘出的总水头线和测压管水头线,分别如图中实线和虚线所示。520 设有一水泵管路系统,如图所示。已知流量Q =101m3/h,管径d =150mm,管路的总水头损失hw1-22O,水泵效率 75.5,上下两水面高差h =102m,试求水泵的扬程和功率P。解:521 高层楼房煤气立管布置,如图所示。B、C两个供煤气点各供应Q =3/s的煤气量。假设煤气的密度 =/m3,管径d =50mm,压强损失AB段用计算,BC段用计算,假定C点要求保持余压为300Pa,试求A点酒精(s =0.8×103kg/m3)液面应有的高差h。空气密度a =/m3。解:,对过流断面A、C写气体伯努利方程可得h=45mm522 矿井竖井和横向坑道相连,如图所示。竖井高为200m,坑道长为300m,坑道和竖井内气温保持恒定t =15,密度 /m3,坑外气温在早晨为5,a /m3,中午为20,a /m3,试问早晨、中午的气流方向和气流速度的大小。假定总的损失为。解:设早晨气流经坑道流出竖井,则设中午气流经竖井流出坑道,则上述假设符合流动方向。523 锅炉省煤器的进口处测得烟气负压h1 2O,出口负压h2 =20mmH2O,如图所示。如炉外空气密度a /m3,烟气的平均密度/m3,两测压断面高差H =5m,试求烟气通过省煤器的压强损失。解:由气体伯努利方程得524 设烟囱直径d =1m,通过烟气量Q =176.2kN/h,烟气密度 0.7kg/m3,周围气体的密度/m3,烟囱压强损失用计算,烟囱高度H,如图所示。若要保证底部(断面11)负压不小于10mmH2O,烟囱高度至少应为多少?试求高度上的压强。为烟囱内烟气速度。解:列1-1、2-2断面气体伯努利方程 H,烟囱高度H应大于。对经过M的过流断面、出口断面写气体伯努利方程可得 525 设绘制例510气流经过烟囱的总压线、势压线和位压线。解:例510的烟囱如题5-25图所示,经a过流断面的位压为ac段压强损失为 cd段压强损失为 动压为 选取0压线,a、c、d各点总压分别为294,(29488.34)205.66,(205.66-196.98)=因烟囱断面不变,各段势压低于总压的动压值相同,出口断面势压为零。a点位压为294;b、c点位压相同,均为;出口断面位压为零。题5-25图总压线、势压线、位压线,分别如图中的实线,虚线和点划线所示。整个烟囱内部都处于负压区。526 设有压圆管流(湍流)(参阅习题5-5图),已知过流断面上的流速分布为,式中为圆管半径,y为管壁到流速是u的点的径向距离,为管轴处的最大流速。试求动量修正系数值。解:设527 设水由水箱经管嘴射出,如图所示。已知水头为H(恒定不变),管嘴截面积为A,水箱水面面积很大。若不计能量损失,试求作用于水箱的水平分力FR。.解:设水箱壁作用于水体的水平分力为,方向向右。动量修正系数1.0,取水箱水面、管嘴出口及水箱体作为控制体,对x轴写总流动量方程可得 对过流断面00、11写伯努利方程,可得所以值与值大小相等,方向相反,即的方向为水平向左。528 设管路中有一段水平(Oxy平面内)放置的等管径弯管,如图所示。已知管径d =,弯管与x轴的夹角 45°,管中过流断面11的平均流速v1 =4m/s,其形心处的相对压强p1 =9.81×104Pa。若不计管流的能量损失,试求水流对弯管的作用力FR。解:设弯管作用于水体的水平分力为,铅垂分力为。由总流动量方程可得由连续性方程得;由伯努利方程得p1=p2。所以,方向与相反529 有一沿铅垂直立墙壁敷设的弯管如图所示,弯头转角为90°,起始断面11到断面22的轴线长度为3.14m,两断面中心高差z为2m。已知断面11中心处动水压强p1为11.76×104Pa,两断面之间水头损失hw2O,管径d为,流量Q为0.06m3/s。试求水流对弯头的作用力FR。解:,对过流断面11、22写伯努利方程可得对x轴写动量方程得对于y轴写动量方程得,方向与相反。530 设有一段水平输水管,如图所示。已知d1 =,d2 =1m,p1 =39.2×104Pa,Q =3/s。水流由过流断面11流到过流断面22,若不计能量损失,试求作用在该段管壁上的轴向力FR。解:设管壁作用于水体的力为,由总流动量方程可得由伯努利方程得,方向与相反,即的方向为水平向右。104Pa9.2531 设水流在宽明渠中流过闸门(二维流动),如图所示。已知H=2m,h=,若不计能量损失(摩擦阻力),试求作用于单宽(b1m)阀门上的力。解:设闸门作用于水体的水平力为,取闸门前后过水断面及之间的部分为控制体,对水平轴列总流动量方程得由习题517求得q3/s,/s,/s。,方向与相反,即的方向为水平向右。532 设将一固定平板放在水平射流中,并垂直于射流的轴线,该平板取射流流量的一部分为Q1,并引起射流的剩余部分偏转一角度,如图所示。已知=30m/s,Q=3/s Q1=12 m3/s。若不计能量损失(摩擦阻力)和液体重量的影响,试求作用在固定平板上的冲击力。解:设平板作用于水体的水平力为,由连续性方程得由伯努利方程得:由总流动量方程得,方向与相反,即的方向为水平向右。533 水流经180°弯管自喷嘴流出,如图所示。已知管径D=75mm,喷嘴直径d=25mm,管端前端的测压表M读数为60kPa,求法兰盘接头A处,上、下螺栓的受力情况。假定螺栓上下前后共安装四个,上下螺栓中心距离为150mm,弯管喷嘴和水重G为100N,它的作用位置如图所示。不计能量损失(摩擦阻力).解:对过流断面11、22写伯努利方程可得由连续性方程可得 因此 设弯管作用于水体的水平力为,取过流断面11、22及喷嘴内水流为控制体,列水平方向总流动量方程可得 水流作用与弯管的力333.82N,方向与相反,即的方向为水平向左,由四个螺栓分别承受。 另外,水体重力和射流反力构成的力矩亦应由螺栓分别承受,由习题527知射流反力为。对断面AA轴心点取矩,以逆时针方向力矩为正,则 上式负号表示力矩的方向与假定的方向相反,即为顺时针方向,且由上、下螺栓分别承受,其力 上螺栓所受的拉力 每个侧螺栓所受的拉力 下螺栓所受的拉力534 一装有水泵的机动船逆水航行,如图所示。已知水速为/s,船相对与陆地的航速0为9m/s,相对于船身水泵向船尾喷出的水射流的射速r为18m/s,水是从船首沿吸水管进入的。当水泵输出功率(即水从水泵获得的功率)为21000W,流量为3/s时,求射流对船身的反推力和喷射推进系统的效率。解:相对于船体的进() m/s/s,出18m/s,射流对船身的反推力F,可由总流动量方程求得,即射流系统的有效功率为F进,所以效率为535 设一水平射流冲击一固定装置在小车上的光滑叶片,如图所示。已知射流密度=kg/m3,速度=/s,过流断面面积A0=2,叶片角度=180°,车的重力G,能量损失和射流重力作用以及小车沿水平方向的磨擦阻力都略去不计。试求射流喷射10s后,小车的速度v1和移动的距离。解:由伯努利方程(动能修正系数取1.0),可得 ;由总流动量方程(动量修正系数取1.0),可得, (1) (2)由式(1)、(2)得,积分得 当t=0,v1=0,C当t=10s, 536 设涡轮如图所示,旋转半径R为,喷嘴直径为25mm,每个喷嘴喷出流量为3/s,若涡轮以100r/min旋转,试求它的功率。解: 功率 537 设有一水管中心装有枢轴的旋转洒水器,水平放置,如图所示。水管两端有方向相反的喷嘴,喷射水流垂直于水管出流。已知旋转半径R=,相对于喷嘴出流速度v=6m/s,喷嘴直径d=。试求:(1)当水管臂静止时,作用在转轴上的力矩M;(2)当水管臂以等角转速旋转,圆周速度为u时,该装置每秒所做的功和效率的表示式。解:(1)根据总流动量矩方程,可得,因,.(2)射流的绝对速度,根据总流动量矩方程,可得两个喷嘴每秒做的功为 两个射流每秒损失的动能功为每秒供给的总能量 洒水器的效率