四川省乐山市眉山第一中学高二数学文模拟试卷含解析.pdf
Word 文档下载后(可任意编辑)四川省乐山市眉山第一中学高二数学文模拟试卷含解析四川省乐山市眉山第一中学高二数学文模拟试卷含解析一、一、 选择题:本大题共选择题:本大题共 1010 小题,每小题小题,每小题 5 5 分,共分,共 5050 分。在每小题给出的四个选项中,只有分。在每小题给出的四个选项中,只有是一个符合题目要求的是一个符合题目要求的1.为虚数单位,则()ABCD参考答案:参考答案:C由复数的基本运算性质,可得,其中 n为自然数,设,两边同乘可得:两式相减可得所以,故选 C.2. 已知斜率为的直线与椭圆交于两点,若这两点在 x 轴的射影恰好是椭圆的焦点,则 e 为()ABCD参考答案:参考答案:D3. 某射手在一次射击中,射中 10 环,9 环,8 环的概率分别是 0.20,0.30,0.10,则该射手在一次射击中不够 8 环的概率为()A0.90B0.30C0.60D0.40参考答案:参考答案:D【考点】C5:互斥事件的概率加法公式【分析】由题意知射手在一次射击中不够8 环的对立事件是射手在一次射击中不小于8 环,射手在一次射击中不小于 8 环包括击中 8 环,9 环,10 环,这三个事件是互斥的,可以做出在一次射击中不小于 8 环的概率,从而根据对立事件的概率得到要求的结果【解答】解:由题意知射手在一次射击中不够8 环的对立事件是射手在一次射击中不小于8 环,射手在一次射击中不小于 8 环包括击中 8 环,9 环,10 环,这三个事件是互斥的,射手在一次射击中不小于 8 环的概率是 0.20+0.30+0.10=0.60,射手在一次射击中不够 8 环的概率是 10.60=0.40,故选:D【点评】本题考查互斥事件和对立事件的概率,是一个基础题,解题的突破口在理解互斥事件的和事件的概率是几个事件的概率的和4. INPUT xIF x0 THENy=(x+1)(x+1)ELSEy=(x-1)(x-1) END IFPRINT yENDA 3 或-3 B -5 C5 或-3 D 5 或-5参考答案:参考答案:D5. 已知 a,b 都是实数,且 a0,b0,则“ab”是“a+lnab+lnb”的()A充分不必要条件B必要不充分条件Word 文档下载后(可任意编辑)C充分必要条件D既不充分也不必要条件参考答案:参考答案:C【考点】2L:必要条件、充分条件与充要条件的判断【分析】根据不等式的关系结合充分条件和必要条件的定义进行判断即可【解答】解:当 a0,b0 时,若 ab,则 lnalnb,此时 a+lnab+lnb 成立,即充分性成立,设 f(x)=x+lnx,当 x0 时,f(x)为增函数,则由 a+lnab+lnb 得 f(a)f(b),即 ab,即必要性成立,则“ab”是“a+lnab+lnb”的充要条件,故选:C【点评】本题主要考查充分条件和必要条件的判断,根据不等式的性质结合函数的单调性的性质是解决本题的关键6. 曲线 f(x)=x3+x-2在 P0点处的切线平行于直线 y=4x-1,则 P0点的坐标为( )A.(1,0)或(-1,-4) B.(0,1) C.(-1,0) D.(1,4)参考答案:参考答案:A略7. 已知圆,直线,则A. l 与 C相离 B. l 与 C相交C. l 与 C相切 D. 以上三个选项均有可能参考答案:参考答案:B【分析】首先求得 l恒过的定点,可判断出定点在圆内,从而得到直线与圆相交.【详解】由 l 方程可知,直线 l 恒过定点:又为圆内部的点与相交本题正确选项:B8. 某单位为了制定节能减排的目标,调查了日用电量y(单位:千瓦时)与当天平均气温 x(单位:),从中随机选取了 4天的日用电量与当天平均气温,并制作了对照表:x1715102y2434a64由表中数据的线性回归方程为,则 a的值为( )A. 42B. 40C. 38D. 36参考答案:参考答案:C【分析】由公式计算得到样本中心的坐标,代入方程可得到参数值.【详解】回归直线过样本中心,样本中心坐标为,代入方程得到+60,解得 a=38.故答案为:C.【点睛】这个题目考查了回归直线方程的应用,考查线性回归直线过样本中心点,在一组具有相关关系的变量的数据间,这样的直线可以画出许多条,而其中的一条能最好地反映x与 y之间的关系,这条直线过样本中心点9. 设函数,则的值为()A B C D参考答案:参考答案:【知识点】等差数列前 n 项和;诱导公式.【答案解析】C 解析 :解:因为,所以,Word 文档下载后(可任意编辑)则=+=+=4027+=.故选:C.【思路点拨】把值依次代入原式,转化为两部分的和,第一部分利用等差数列前n 项和公式求和,而第二部分则利用诱导公式化简,第三部分常数列求和,最后相加即可.10. 如果函数 f(x)对任意 a,b 满足 f(a+b)=f(a)?f(b),且 f(1)=2,则=()A1006B2010C2016D4032参考答案:参考答案:C【考点】函数的值【专题】方程思想;转化法;函数的性质及应用【分析】令 b=1,得 f(a+1)=f(a)?f(1)=2f(a),得=2,由此能求出结果【解答】解:函数 f(x)满足:对任意实数 a,b 都有 f(a+b)=f(a)f(b),且 f(1)=2,=2+2+2=2=21008=2016故选:C【点评】本题主要考查函数值的计算,根据条件寻找规律是解决本题的关键二、二、 填空题填空题: :本大题共本大题共 7 7 小题小题, ,每小题每小题 4 4 分分, ,共共 2828 分分11. 已知椭圆的左、右焦点分别为,若椭圆上存在一点使,则该椭圆的离心率的取值范围为 .参考答案:参考答案:12. 描述算法的方法通常有:(1)自然语言;(2);(3)伪代码.参考答案:参考答案:流程图13. 计算:参考答案:参考答案:14. 已知数列an的前 n项和为 Sn,且,则参考答案:参考答案:15. 设动直线与函数的图象分别交于点,则的最小值为 .参考答案:参考答案:16. 直线与圆交于、两点,为坐标原点,若,则半径 .参考答案:参考答案:Word 文档下载后(可任意编辑)17. 某地区对某段公路上行驶的汽车速度监控,从中抽取 200 辆汽车进行测速分析,得到如图所示的频率分布直方图,根据该图,可估计这组数据的平均数和中位数依次为_.参考答案:参考答案:略三、三、 解答题:本大题共解答题:本大题共 5 5 小题,共小题,共 7272 分。解答应写出文字说明,证明过程或演算步骤分。解答应写出文字说明,证明过程或演算步骤18. (本小题满分 12 分)用总长为 14.8m 的钢条制作一个长方体容器的框架,如果所制作容器的底面的一边比另一边长 0.5m,那么高为多少时容器的容积最大?并求出它的最大容积,参考答案:参考答案:设容器底面短边的边长为,容积为.则底面另一边长为高为:-2分由题意知:-4 分则-6分令,解之得:(舍去)又当时,为增函数时,为减函数所以得极大值,-9分这个极大值就是在时的最大值,即此时容器的高为 1.2所以当高为 1.2m 时,容器的容积最大,最大值为1.8m 12分19. (本小题满分 16分)已知函数x32x23x(xR)的图象为曲线 C(1)求过曲线 C上任意一点的切线倾斜角的取值范围;(2)求在区间1,4上的最值;(3)若在曲线 C上存在两条相互垂直的切线,求其中一条切线与曲线C的切点的横坐标的取值范围参考答案:参考答案:解:(1)由题意得 f(x)x24x3,则 f(x)(x2)211,2分即过曲线 C上任意一点切线倾斜角的取值范围是4分(2)的最大值为;的最小值为9分(3)设曲线 C的其中一条切线的斜率为 k,则由(2)中条件并结合(1)中结论可知,12分解得1k0或 k1,故由1x24x30或 x24x31,得 x(,2(1,3)2,)16分20. 已知圆 C1的参数方程为(为参数),以坐标原点 O为极点,x轴的正半轴为极轴建立极坐标系,圆 C2的极坐标方程为.(1)将圆 C1的参数方程化为普通方程,将圆C2的极坐标方程化为直角坐标方程;Word 文档下载后(可任意编辑)(2)圆 C1,C2是否相交?若相交,请求出公共弦长;若不相交,请说明理由参考答案:参考答案:(1),;(2)两圆的相交弦长为.【分析】(1) 将圆 C1的参数方程化为普通方程,将圆C2的极坐标方程化为直角坐标方程.(2)【详解】(1)由(为参数),得圆 C1的普通方程为 x2y24.由 4sin,得 24,即 x2y22y2x,整理得圆 C2的直角坐标方程为(x)2(y1)24.(2)由于圆 C1表示圆心为原点,半径为 2的圆,圆 C2表示圆心为(,1),半径为 2的圆,又圆 C2的圆心(,1)在圆 C1上可知,圆 C1,C2相交,由几何性质易知,两圆的公共弦长为2.【点睛】(1)本题主要考查极坐标方程、参数方程和直角坐标方程的互化,考查弦长的计算、圆和圆的位置关系,意在考查学生对这些知识的掌握水平和分析推理计算能力.(2)求圆的弦长经常用到公式.21. (8 分)(1)求函数,的值域。(2) 已知,求证:参考答案:参考答案:(1)当时,则4 分(2)8 分22. (本题满分(本题满分 1212 分)分)如图,已知矩形 ABCD所在平面外一点 P,PA平面 ABCD,E、F分别是 AB、PC 的中点(1)求证:EF平面 PAD;ks*5u(2)求证:EFCD;参考答案:参考答案:证明:(1)取 PD 的中点 G,连结 FG,AG E、F分别是 AB、PC 的中点AEGF且 AE=GF四边形 AEFG是平行四边形 .3分EFAG 而 EF平面 PAD,AG平面 PADEF平面 PAD.6 分(2).7分而四边形 ABCD是矩形.9分.10分.12 分略Word 文档下载后(可任意编辑)