中考数学常见题型几何动点问题(7页).doc
-中考数学常见题型几何动点问题-第 7 页中考数学压轴题型研究(一)动点几何问题例1:在ABC中,B=60°,BA=24CM,BC=16CM,(1)求ABC的面积;ACB(2)现有动点P从A点出发,沿射线AB向点B方向运动,动点Q从C点出发,沿射线CB也向点B方向运动。如果点P的速度是4CM/秒,点Q的速度是2CM/秒,它们同时出发,几秒钟后,PBQ的面积是ABC的面积的一半?(3)在第(2)问题前提下,P,Q两点之间的距离是多少?例2: ()已知正方形ABCD的边长是1,E为CD边的中点, P为正方形ABCD边上的一个动点,动点P从A点出发,沿A B C E运动,到达点E.若点P经过的路程为自变量x,APE的面积为函数y, (1)写出y与x的关系式 (2)求当y时,x的值等于多少? 例3:如图1 ,在直角梯形ABCD中,B=90°,DCAB,动点P从B点出发,沿梯形的边由BC D A 运动,设点P运动的路程为x ,ABP的面积为y , 如果关于x 的函数y的图象如图2所示 ,那么ABC 的面积为( )xAOQPByA32B18C16 D10 例4:直线与坐标轴分别交于两点,动点同时从点出发,同时到达点,运动停止点沿线段运动,速度为每秒1个单位长度,点沿路线运动(1)直接写出两点的坐标;(2)设点的运动时间为秒,的面积为,求出与之间的函数关系式;(3)当时,求出点的坐标,并直接写出以点为顶点的平行四边形的第四个顶点的坐标例5:已知:等边三角形的边长为4厘米,长为1厘米的线段在的边上沿方向以1厘米/秒的速度向点运动(运动开始时,点与点重合,点到达点时运动终止),过点分别作边的垂线,与的其它边交于两点,线段运动的时间为秒(1)线段在运动的过程中,为何值时,四边形恰为矩形?并求出该矩形的面积;CPQBAMN(2)线段在运动的过程中,四边形的面积为,运动的时间为求四边形的面积随运动时间变化的函数关系式,并写出自变量的取值范围图(3)CcDcAcBcQcPcEc例6:如图(3),在梯形中,厘米,厘米,的坡度动点从出发以2厘米/秒的速度沿方向向点运动,动点从点出发以3厘米/秒的速度沿方向向点运动,两个动点同时出发,当其中一个动点到达终点时,另一个动点也随之停止设动点运动的时间为秒(1)求边的长;(2)当为何值时,与相互平分;(3)连结设的面积为探求与的函数关系式,求为何值时,有最大值?最大值是多少?二、利用函数与方程的思想和方法将所解决图形的性质(或所求图形面积)直接转化为函数或方程。AQCDBP 例7:如图,已知中,厘米,厘米,点为的中点(1)如果点P在线段BC上以3厘米/秒的速度由B点向C点运动,同时,点Q在线段CA上由C点向A点运动若点Q的运动速度与点P的运动速度相等,经过1秒后,与是否全等,请说明理由;若点Q的运动速度与点P的运动速度不相等,当点Q的运动速度为多少时,能够使与全等?(2)若点Q以中的运动速度从点C出发,点P以原来的运动速度从点B同时出发,都逆时针沿三边运动,求经过多长时间点P与点Q第一次在的哪条边上相遇?例8:如图,在梯形中,动点从点出发沿线段以每秒2个单位长度的速度向终点运动;动点同时从点出发沿线段以每秒1个单位长度的速度向终点运动设运动的时间为秒(1)求的长(2)当时,求的值(3)试探究:为何值时,为等腰三角形例9:(如图,在直角梯形ABCD中,ADBC,ABC90º,AB12cm,AD8cm,BC22cm,AB为O的直径,动点P从点A开始沿AD边向点D以1cm/s的速度运动,动点Q从点C开始沿CB边向点B以2cm/s的速度运动,P、Q分别从点A、C同时出发,当其中一点到达端点时,另一个动点也随之停止运动设运动时间为t(s)(1)当t为何值时,四边形PQCD为平行四边形?(2)当t为何值时,PQ与O相切?OAPDBQC例10. 如图,在矩形ABCD中,BC=20cm,P,Q,M,N分别从A,B,C,D出发沿AD,BC,CB,DA方向在矩形的边上同时运动,当有一个点先到达所在运动边的另一个端点时,运动即停止已知在相同时间内,若BQ=xcm(),则AP=2xcm,CM=3xcm,DN=x2cm(1)当x为何值时,以PQ,MN为两边,以矩形的边(AD或BC)的一部分为第三边构成一个三角形;(2)当x 为何值时,以P,Q,M,N为顶点的四边形是平行四边形;(3)以P,Q,M,N为顶点的四边形能否为等腰梯形?如果能,求x的值;如果不能,请说明理由ABDCPQMN(第25题)练习1BCPODQABPCODQA1如图,正方形的边长为,在对称中心处有一钉子动点,同时从点出发,点沿方向以每秒的速度运动,到点停止,点沿方向以每秒的速度运动,到点停止,两点用一条可伸缩的细橡皮筋联结,设秒后橡皮筋扫过的面积为(1)当时,求与之间的函数关系式;(2)当橡皮筋刚好触及钉子时,求值;(3)当时,求与之间的函数关系式,并写出橡皮筋从触及钉子到运动停止时的变化范围;(4)当时,请在给出的直角坐标系中画出与之间的函数图象解 (1)当时,即 (2)当时,橡皮筋刚好触及钉子,(3)当时,即 作,为垂足当时,即 或(4)如图所示:2.如图,平面直角坐标系中,直线AB与轴,轴分别交于A(3,0),B(0,)两点, ,点C为线段AB上的一动点,过点C作CD轴于点D.(1)求直线AB的解析式;(2)若S梯形OBCD,求点C的坐标;(3)在第一象限内是否存在点P,使得以P,O,B为顶点的三角形与OBA相似.若存在,请求出所有符合条件的点P的坐标;若不存在,请说明理由.解 (1)直线AB解析式为:y=x+ (2)方法一:设点坐标为(x,x+),那么ODx,CDx+由题意: ,解得(舍去)(,)方法二:,,由OA=OB,得BAO30°,AD=CDCD×AD可得CD AD=,ODC(,)()当OBPRt时,如图 若BOPOBA,则BOPBAO=30°,BP=OB=3,(3,) 若BPOOBA,则BPOBAO=30°,OP=OB=1(1,)当OPBRt时 过点P作OPBC于点P(如图),此时PBOOBA,BOPBAO30°过点P作PMOA于点M方法一: 在RtPBO中,BPOB,OPBP 在RtPO中,OPM30°, OMOP;PMOM(,)方法二:设(x ,x+),得OMx ,PMx+由BOPBAO,得POMABOtanPOM= ,tanABOC=x+x,解得x此时,(,) 若POBOBA(如图),则OBP=BAO30°,POM30° PMOM(,)(由对称性也可得到点的坐标)当OPBRt时,点P在轴上,不符合要求.综合得,符合条件的点有四个,分别是:(3,),(1,),(,),(,)3如图所示,在平面直角坐标中,四边形OABC是等腰梯形,BCOA,OA=7,AB=4, COA=60°,点P为x轴上的个动点,点P不与点0、点A重合连结CP,过点P作PD交AB于点D (1)求点B的坐标; (2)当点P运动什么位置时,OCP为等腰三角形,求这时点P的坐标;(3)当点P运动什么位置时,使得CPD=OAB,且=,求这时点P的坐标。解 (1)作BQx轴于Q. 四边形ABCD是等腰梯形,BAQCOA60°在RtBQA中,BA=4,BQ=AB·sinBAO=4×sin60°=AQ=AB·cosBAO=4×cos60°=2,OQ=OA-AQ=7-2=5点B在第一象限内,点B的的坐标为(5, )(2)若OCP为等腰三角形,COP=60°,此时OCP为等边三角形或是顶角为120°的等腰三角形若OCP为等边三角形,OP=OC=PC=4,且点P在x轴的正半轴上,点P的坐标为(4,0)若OCP是顶角为120°的等腰三角形,则点P在x轴的负半轴上,且OP=OC=4点P的坐标为(-4,0)点P的坐标为(4,0)或(-4,0)(3)若CPD=OABCPA=OCP+COP而OAB=COP=60°,OCP=DPA此时OCPADPAD=AB-BD=4-=AP=OA-OP=7-OP得OP=1或6点P坐标为(1,0)或(6,0).图BAQPCH4 已知:如图,在RtABC中,C=900,AC=4cm,BC=3cm,点P由B出发沿BA方向向点A匀速运动,速度为1cm/s;点Q由A出发沿AC方向向点C匀速运动,速度为2cm/s;连接PQ若设运动的时间为t(s)(0<t<2),解答下列问题:(1)当t为何值时,PQBC?(2)设AQP的面积为y(cm2),求y与t之间的函数关系式;(3)是否存在某一时刻t,使线段PQ恰好把RtABC的周长和面积同时平分?若存在,求出此时t的值;若不存在,说明理由;(4)如图,连接PC,并把PQC沿QC翻折,得到四边形PQPC,那么是否存在某一时刻t,使四边形PQPC为菱形?若存在,求出此时菱形的边长;若不存在,说明理由 解:(1)在RtABC中,由题意知:AP = 5t,AQ = 2t,若PQBC,则APQ ABC, (2)过点P作PHAC于HAPH ABC,(3)若PQ把ABC周长平分,则AP+AQ=BP+BC+CQ, 解得:若PQ把ABC面积平分,则, 即3t=3 t=1代入上面方程不成立, 不存在这一时刻t,使线段PQ把RtACB的周长和面积同时平分 (4)过点P作PMAC于,PNBC于N,P BAQPC图MN若四边形PQP C是菱形,那么PQPCPMAC于M,QM=CMPNBC于N,易知PBNABC,解得:当时,四边形PQP C 是菱形 此时,在RtPMC中,菱形PQP C边长为