专题04 立体几何-2022年高考文数考纲揭秘及预测(4页).doc
-
资源ID:36764293
资源大小:329.50KB
全文页数:4页
- 资源格式: DOC
下载积分:15金币
快捷下载
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
专题04 立体几何-2022年高考文数考纲揭秘及预测(4页).doc
-专题04 立体几何-2022年高考文数考纲揭秘及预测-第 4 页(三)立体几何初步1空间几何体(1)认识柱、锥、台、球及其简单组合体的结构特征,并能运用这些特征描述现实生活中简单物体的结构.(2)能画出简单空间图形(长方体、球、圆柱、圆锥、棱柱等的简易组合)的三视图,能识别上述三视图所表示的立体模型,会用斜二侧法画出它们的直观图.(3)会用平行投影方法画出简单空间图形的三视图与直观图,了解空间图形的不同表示形式.(4)了解球、棱柱、棱锥、台的表面积和体积的计算公式.2点、直线、平面之间的位置关系(1)理解空间直线、平面位置关系的定义,并了解如下可以作为推理依据的公理和定理:公理1:如果一条直线上的两点在同一个平面内,那么这条直线在此平面内.公理2:过不在一条直线上的三点,有且只有一个平面.公理3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线.公理4:平行于同一条直线的两条直线平行.定理:空间中如果两个角的两条边分别对应平行,那么这两个角相等或互补.(2)以立体几何的上述定义、公理和定理为出发点,认识和理解空间中线面平行、垂直的有关性质与判定定理.理解以下判定定理:平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行.一个平面内的两条相交直线与另一个平面平行,则这两个平面平行.一条直线与一个平面内的两条相交直线垂直,则该直线与此平面垂直.一个平面过另一个平面的垂线,则两个平面垂直.理解以下性质定理,并加以证明:如果一条直线与一个平面平行,那么过该直线的任一个平面与此平面的交线和该直线平行.两个平面平行,则任意一个平面与这两个平面相交所得的交线相互平行.垂直于同一个平面的两条直线平行.两个平面垂直,则一个平面内垂直于交线的直线与另一个平面垂直.(3)能运用公理、定理和已获得的结论证明一些空间位置关系的简单命题.对空间几何体的考查:1从考查题型来看,涉及本专题的题目一般以选择题、填空题的形式出现,考查空间几何体的三视图的识别,空间几何体的表面积、体积的计算.2从考查内容来看,主要考查由空间几何体的三视图确定其直观图,并求其表面积、体积.重点在于空间几何体的表面积、体积计算公式的正确使用,难点是如何根据三视图确定空间几何体的结构特征.3从考查热点来看,空间几何体的表面积、体积问题是高考命题的热点,以空间几何体的三视图为基准,识别该几何体,并计算其表面积、体积,通常情况下以计算体积为主,这是高考主要的考查方式.对点、直线、平面之间的位置关系的考查:学。科、网*1从考查题型来看,涉及本专题的选择题、填空题一般从宏观的角度,结合实际观察、判断空间点、线、面的位置关系,确定命题的真假;解答题中则从微观的角度,严密推导线面平行、垂直.2从考查内容来看,主要考查空间点、线、面位置关系的命题的判断及证明,重点是根据平行、垂直的判定定理与性质定理证明线面平行、垂直,难点则是如何计算空间中有关距离的问题.3从考查热点来看,证明空间线面平行、垂直是高考命题的热点,结合平行、垂直的判定定理及性质定理,通过添加辅助线的方式证明是常考的方式.要注意结合空间几何体的特征严格推理论证.1某几何体的三视图如图所示,则该几何体的表面积为A BC D2已知三棱锥内接于球,且,若三棱锥体积的最大值为,则球的表面积为A B C D3如图,四棱锥中,底面,底面是直角梯形, ,点在上,且(1)已知点在上,且,求证:平面平面;(2)若的面积是梯形面积的,求点到平面的距离2B 【解析】设为底面的中心,由题意知三棱锥体积的最大值为,则,解得.因为, ,所以在直角三角形中,,解得,故球的表面积为,故选B.(2)底面,且,如图,取的中点为,连接,则,设,连接,则,侧面的面积是底面面积的,即,求得,到平面的距离即到平面的距离,到平面的距离为欢迎访问“高中试卷网”http:/sj.fjjy.org