【人教B版】选修2-3数学(理):1.2.1《排列》教案设计(3页).doc
-
资源ID:36764840
资源大小:157KB
全文页数:3页
- 资源格式: DOC
下载积分:15金币
快捷下载
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
【人教B版】选修2-3数学(理):1.2.1《排列》教案设计(3页).doc
-【人教B版】选修2-3数学(理):1.2.1排列教案设计-第 3 页1.2.1 排列【教学目标】了解排列和排列数的意义,掌握排列数公式及推导方法,能运用所学的排列知识,正确地解决实际问题;培养归纳概括能力;从中体会“化归”的数学思想【教学重点】排列、排列数的概念【教学难点】排列数公式的推导一、课前预习1.我们把被取得对象叫做_.2.从n个_的元素中_个元素,按照_排成一列,叫做从n个不同元素中取出m个元素的一个排列. 两个排列相同的含义为:_.3.从n个_的元素中_个元素的所有排列的_,叫做从n个不同元素中取出m个元素的排列数,用符号_表示.且排列数公式为特殊的,n个_的元素全部取出的一个排列,叫做n个不同元素的一个全排列,此时m=n,则. 规定 0!=_.排列数公式的阶乘表示式为4.思考 排列与排列数的区别:二、课上学习例1、(1)写出从甲、乙、丙三个元素种任取两个元素的所有排列:(2)写出由1,2,3这三个数字组成的没有重复数字的所有三位数.例2、(1)计算: (2)解方程: (3)解不等式:例3、用0,1,2,3,4,5六个数字.(1) 能组成多少个无重复数字的四位偶数?其中小于4000的有多少个?(2) 能组成多少个无重复数字且为5的倍数的五位数?例4、有5名男生,4名女生排成一排.(1)从中选出3人排成一排,有多少种排法?(2)若甲男生不站排头,乙女生不站排尾,则有多少种不同的排法?(3)要求女生必须站在一起,有多少种不同的排法?(4)若四名女生互不相邻,有多少种不同的排法?(5)若男生甲必须站在女生乙的右边(甲、乙可以不相邻),有多少种不同的站法?(6)男生和女生间隔排列的方法有多少种?例5、在一张节目表上原有6个节目,如果保持这些节目的相对顺序不变,再添加进去三个节目,共有多少种安排方法?三、课后练习1.有小麦、大麦品种各一种,在5块不同土质的试验田里引种试验,要求小麦品种有3块试验田,大麦品种有2块试验田,问有多少种不同的试验方法?2.5名同学站成一排,(1)甲、乙两名同学不能站在一起的不同排法总数有多少种? (2)甲不能站在两端,乙不能站在中间的不同排法有多少种? (3)甲、乙、丙3人必须站在一起的所有排列种数有多少种? (4)甲、乙、丙3人要站在一起,且要求乙、丙分别站在甲的两边,有多少种不同的排法?3.4棵柳树和4棵杨树,栽成一行,且杨树和柳树逐一相间的栽法共有多少种?4.计划在某画廊展出10幅不同的画,其中一幅水彩画、4幅油画、5幅国画,排成一行陈列,要求同一品种的画必须连在一起,并且水彩画不放在两端,不同的成列方式有多少种?5.(1)8名学生站成两排,前排4人,后排4人,有多少种不同的站法? (2)8人分两排坐,每排4人,限定甲必须坐在前排,乙、丙必须坐在同一排,共有多少种安排办法?6.5人站成一排,甲、乙两人之间恰有1人的不同站法种数是( ) 18种 24种 36种 48种7.一环形花坛分成A,B,C,D四块.现有四种不同的花供选择,要求在每块里种1种花,且相邻的2块种不同的花,则不同的种法种数为( ) 96 84 60 488.从6名志愿者中选出4人分别从事翻译、导游、导购、保洁四项不同的工作,若其中甲、乙两人不能从事翻译工作,则选派方案有多少种?9.六个停车位置,有3辆汽车需要停放,若要使三个空位连在一起,则停放的方法种数为( )10.(1)4个同学,分配到3个课外小组中去活动,共有几种分配方法? (2)4个同学争夺3项竞赛的冠军,冠军获得者共有几种可能情况?