中考数学压轴综合题(精华20题)(9页).doc
-中考数学压轴综合题(精华20题)-第 8 页2012中考数学压轴综合题(精华20道)【01】如图,点P是双曲线上一动点,过点P作x轴、y轴的垂线,分别交x轴、y轴于A、B两点,交双曲线y= (0k2|k1|)于E、F两点(1)图1中,四边形PEOF的面积S1= (用含k1、k2的式子表示);(2)图2中,设P点坐标为(4,3)判断EF与AB的位置关系,并证明你的结论;记,S2是否有最小值?若有,求出其最小值;若没有,请说明理由。(第21题图) 设P(a,b) P在双曲线y=k1x上 b=k1a P(a,k1a) OB=k1a,OA=-a PFy轴,PEx轴 E点横坐标与P点横坐标相等,F点纵坐标与P点纵坐标相等 E点纵坐标为k2a,F点横坐标为ak2k1 PE=k1a-k2a,BF=ak2k1 S梯形PBOE=12(OB+PE)OA=12(k1a-k2a+k1a)(-a)=-k1+12k2 SBOF=12BOBF=12k1aak2k1=12k2 S1= S梯形PBOE+ SBOF=-k1+12k2+12k2=k2-k1 EFABP(4,3) k1=-12 PB=4,PA=3 PAPB=34由知BF=k23,AE=k24 PE=12+k24,PF=12+k23 P=P,PEPF=PAPB=34 PBAPFE PAB=PEF ABEFS2没有最小值,理由如下:过E作EMy轴于点M,过F作FNx轴于点N,两线交于点Q由上知M(0, ),N( ,0),Q( , ) 而SEFQ= SPEF,S2SPEFSOEFSEFQSOEFSEOMSFONS矩形OMQN当 时,S2的值随k2的增大而增大,而0k212 0S224,s2没有最小值【02】一开口向上的抛物线与x轴交于A(m2,0),B(m2,0)两点,记抛物线顶点为C,且ACBC(1)若m为常数,求抛物线的解析式;(2)若m为小于0的常数,那么(1)中的抛物线经过怎么样的平移可以使顶点在坐标原点?(3)设抛物线交y轴正半轴于D点,问是否存在实数m,使得BOD为等腰三角形?若存在,求出m的值;若不存在,请说明理由解:(1)设抛物线的解析式为:ya(xm2)(xm2)a(xm)24a2分ACBC,由抛物线的对称性可知:ACB是等腰直角三角形,又AB4,C(m,2)代入得a 解析式为:y (xm)225分(亦可求C点,设顶点式)(2)m为小于零的常数,只需将抛物线向右平移m个单位,再向上平移2个单位,可以使抛物线y (xm)22顶点在坐标原点7分(3)由(1)得D(0, m22),设存在实数m,使得BOD为等腰三角形BOD为直角三角形,只能ODOB9分 m22|m2|,当m20时,解得m4或m2(舍)当m20时,解得m0(舍)或m2(舍);当m20时,即m2时,B、O、D三点重合(不合题意,舍)综上所述:存在实数m4,使得BOD为等腰三角形12分【03】如图,在梯形中,点是的中点,是等边三角形(1)求证:梯形是等腰梯形;(2)动点、分别在线段和上运动,且保持不变设求与的函数关系式;(3)在(2)中:当动点、运动到何处时,以点、和点、中的两个点为顶点的四边形是平行四边形?并指出符合条件的平行四边形的个数;当取最小值时,判断的形状,并说明理由ADCBPMQ60°【解析】(1)证明:是等边三角形是中点梯形是等腰梯形(2)解:在等边中, (这个角度传递非常重要,大家要仔细揣摩) (设元以后得出比例关系,轻松化成二次函数的样子)【思路分析2】第三问的条件又回归了当动点静止时的问题。由第二问所得的二次函数,很轻易就可以求出当X取对称轴的值时Y有最小值。接下来就变成了“给定PC=2,求PQC形状”的问题了。由已知的BC=4,自然看出P是中点,于是问题轻松求解。(3)解: 为直角三角形当取最小值时,是的中点,而【04】如图,已知为直角三角形,,点、在轴上,点坐标为(,)(),线段与轴相交于点,以(1,0)为顶点的抛物线过点、(1)求点的坐标(用表示);(2)求抛物线的解析式; (3)设点为抛物线上点至点之间的一动点,连结并延长交于点,连结 并延长交于点,试证明:为定值(1)由B(3,m)可知OC=3,BC=m,又ABC为等腰直角三角形,AC=BC=m,OA=m-3,点A的坐标是(3-m,0)(2)ODA=OAD=45°OD=OA=m-3,则点D的坐标是(0,m-3)又抛物线顶点为P(1,0),且过点B、D,所以可设抛物线的解析式为:y=a(x-1)2,得: a(3-1)2=m a(0-1)2=m-3解得 a=1 m=4抛物线的解析式为y=x2-2x+1;(3)过点Q作QMAC于点M,过点Q作QNBC于点N,设点Q的坐标是(x,x2-2x+1),则QM=CN=(x-1)2,MC=QN=3-xQMCEPQMPEC QMEC=PMPC即 (x-1)2/EC=(x-1)/2,得EC=2(x-1)QNFCBQNBFC QN/FC=BN/BC即 3-x/FC=(4-(x-1)2)/4,得 FC=4x+1又AC=4FC(AC+EC)= 4/x+14+2(x-1)= 4x+1(2x+2)= 4/x+1×2×(x+1)=8即FC(AC+EC)为定值8【05】如图,直线与两坐标轴分别相交于A、B点,点M是线段AB上任意一点(A、B两点除外),过M分别作MCOA于点C,MDOB于D(1)当点M在AB上运动时,你认为四边形OCMD的周长是否发生变化?并说明理由;(2)当点M运动到什么位置时,四边形OCMD的面积有最大值?最大值是多少?(3)当四边形OCMD为正方形时,将四边形OCMD沿着x轴的正方向移动,设平移的距离为,正方形OCMD与AOB重叠部分的面积为S试求S与的函数关系式并画出该函数的图象(第25题图)BxyMCDOA图(1)BxyOA图(2)BxyOA图(3)【06】如图1,在ABC中,C=90°,BC=8,AC=6,另有一直角梯形DEFH(HFDE,HDE=90°)的底边DE落在CB上,腰DH落在CA上,且DE=4,DEF=CBA,AHAC=23(1)延长HF交AB于G,求AHG的面积.(2)操作:固定ABC,将直角梯形DEFH以每秒1个单位的速度沿CB方向向右移动,直到点D与点B重合时停止,设运动的时间为t秒,运动后的直角梯形为DEFH(如图2).探究1:在运动中,四边形CDHH能否为正方形?若能, 请求出此时t的值;若不能,请说明理由.探究2:在运动过程中,ABC与直角梯形DEFH重叠部分的面积为y,求y与t的函数关系.图2图1(第26题图)【07】如图,抛物线顶点坐标为点C(1,4),交x轴于点A(3,0),交y轴于点B.(1)求抛物线和直线AB的解析式;(2)点P是抛物线(在第一象限内)上的一个动点,连结PA,PB,当P点运动到顶点C时,求CAB的铅垂高CD及;(3)是否存在一点P,使SPAB=SCAB,若存在,求出P点的坐标;若不存在,请说明理由.(第27题图)xCOyABD11【08】如图,已知抛物线与交于A(1,0)、E(3,0)两点,与轴交于点B(0,3)。(1) 求抛物线的解析式;(2) 设抛物线顶点为D,求四边形AEDB的面积;(3) AOB与DBE是否相似?如果相似,请给以证明;如果不相似,请说明理由。【09】已知二次函数。(1)求证:不论a为何实数,此函数图象与x轴总有两个交点。(2)设a<0,当此函数图象与x轴的两个交点的距离为时,求出此二次函数的解析式。(3)若此二次函数图象与x轴交于A、B两点,在函数图象上是否存在点P,使得PAB的面积为,若存在求出P点坐标,若不存在请说明理由。【10】如图,已知射线DE与轴和轴分别交于点和点动点从点出发,以1个单位长度/秒的速度沿轴向左作匀速运动,与此同时,动点P从点D出发,也以1个单位长度/秒的速度沿射线DE的方向作匀速运动设运动时间为秒(1)请用含的代数式分别表示出点C与点P的坐标;(2)以点C为圆心、个单位长度为半径的与轴交于A、B两点(点A在点B的左侧),连接PA、PBOxyEPDABMC当与射线DE有公共点时,求的取值范围;当为等腰三角形时,求的值【11】已知直角坐标系中菱形ABCD的位置如图,C,D两点的坐标分别为(4,0),(0,3).现有两动点P,Q分别从A,C同时出发,点P沿线段AD向终点D运动,点Q沿折线CBA向终点A运动,设运动时间为t秒.(1)填空:菱形ABCD的边长是 、面积是 、 高BE的长是 ;(2)探究下列问题:若点P的速度为每秒1个单位,点Q的速度为每秒2个单位.当点Q在线段BA上时,求APQ的面积S关于t的函数关系式,以及S的最大值; 若点P的速度为每秒1个单位,点Q的速度变为每秒k个单位,在运动过程中,任何时刻都有相应的k值,使得APQ沿它的一边翻折,翻折前后两个三角形组成的四边形为菱形.请探究当t=4秒时的情形,并求出k的值。【12】如图,已知A、B是线段MN上的两点,以A为中心顺时针旋转点M,以B为中心逆时针旋转点N,使M、N两点重合成一点C,构成ABC,设(1)求x的取值范围;(2)若ABC为直角三角形,求x的值;(3)探究:ABC的最大面积?CABNM【13】已知抛物线()与轴相交于点,顶点为.直线分别与轴,轴相交于两点,并且与直线相交于点.(1)填空:试用含的代数式分别表示点与的坐标,则; (2)如图a,将沿轴翻折,若点的对应点恰好落在抛物线上,与轴交于点,连结,求的值和四边形的面积;(3)在抛物线()上是否存在一点,使得以为顶点的四边形是平行四边形?若存在,求出点的坐标;若不存在,试说明理由.图axyBCODAMNNxyBCOAMN备用图(第33题图)【14】若P为所在平面上一点,且,则点叫做的费马点.(1)若点为锐角的费马点,且,则的值为_;(2)如图,在锐角外侧作等边连结.求证:过的费马点,且=.ACB(第34题图)【15】如图,正方形 ABCD中,点A、B的坐标分别为(0,10),(8,4), 点C在第一象限动点P在正方形 ABCD的边上,从点A出发沿ABCD匀速运动, 同时动点Q以相同速度在x轴正半轴上运动,当P点到达D点时,两点同时停止运动, 设运动的时间为t秒(1)当P点在边AB上运动时,点Q的横坐标(长度单位)关于运动时间t(秒)的函数图象如图所示,请写出点Q开始运动时的坐标及点P运动速度;(2)求正方形边长及顶点C的坐标;(3)在(1)中当t为何值时,OPQ的面积最大,并求此时P点的坐标;(4)如果点P、Q保持原速度不变,当点P沿ABCD匀速运动时,OP与PQ能否相等,若能,写出所有符合条件的t的值;若不能,请说明理由【16】已知:如图,在平面直角坐标系中,矩形OABC的边OA在y轴的正半轴上,OC在x轴的正半轴上,OA=2,OC=3过原点O作AOC的平分线交AB于点D,连接DC,过点D作DEDC,交OA于点E(1)求过点E、D、C的抛物线的解析式;(2)将EDC绕点D按顺时针方向旋转后,角的一边与y轴的正半轴交于点F,另一边与线段OC交于点G如果DF与(1)中的抛物线交于另一点M,点M的横坐标为,那么EF=2GO是否成立?若成立,请给予证明;若不成立,请说明理由;(3)对于(2)中的点G,在位于第一象限内的该抛物线上是否存在点Q,使得直线GQ与AB的交点P与点C、G构成的PCG是等腰三角形?若存在,请求出点Q的坐标;若不存在,请说明理由(第36题图)yxDBCAEEO【17】已知平行于x轴的直线与函数和函数的图像分别交于点A和点B,又有定点P(2,0) .来源:Zxxk.Com(1)若,且tanPOB=,求线段AB的长;(2)在过A,B两点且顶点在直线上的抛物线中,已知线段AB=,且在它的对称轴左边时,y随着x的增大而增大,试求出满足条件的抛物线的解析式;(3)已知经过A,B,P三点的抛物线,平移后能得到的图像,求点P到直线AB的距离。(第37题图)【18】如图1,在平面直角坐标系中,O为坐标原点,点A的坐标为(8,0),直线BC经过点B(8,6),将四边形OABC绕点O按顺时针方向旋转度得到四边形OABC,此时声母OA、直线BC分别与直线BC相交于P、Q(1)四边形的形状是 , 当=90°时,的值是 (2)如图2,当四边形OABC的顶点B落在y轴正半轴上时,求的值;如图3,当四边形OABC的顶点B落在直线BC上时,求OPB的面积(3)在四边形OABC旋转过程中,当时,是否存在这样的点P和点Q,使BP=?若存在,请直接写出点P的坐标;基不存在,请说明理由(第38题图)【19】如图,已知点A(-4,8)和点B(2,n)在抛物线上(1)求a的值及点B关于x轴对称点P的坐标,并在x轴上找一点Q,使得AQ+QB最短,求出点Q的坐标;(2)平移抛物线,记平移后点A的对应点为A,点B的对应点为B,点C(-2,0)和点D(-4,0)是x轴上的两个定点当抛物线向左平移到某个位置时,AC+CB 最短,求此时抛物线的函数解析式;当抛物线向左或向右平移时,是否存在某个位置,使四边形ABCD的周长最短?若存在,求出此时抛物线的函数解析式;若不存在,请说明理由(第39题图)4x22A8-2O-2-4y6BCD-44【20】与是两个直角边都等于厘米的等腰直角三角形,M、N分别是直角边AC、BC的中点。位置固定,按如图叠放,使斜边在直线MN上,顶点与点M重合。等腰直角以1厘米/秒的速度沿直线MN向右平移,直到点与点N重合。设秒时,与重叠部分面积为平方厘米。(1)当与重叠部分面积为平方厘米时,求移动的时间;(2)求与的函数关系式;(3)求与重叠部分面积的最大值。来源:Zxxk.Com