专题27归纳推理、类比推理与演绎推理-2022版高三数学一轮复习特色专题训练(原卷版)(6页).doc
-专题27 归纳推理、类比推理与演绎推理-2022版高三数学一轮复习特色专题训练(原卷版)-第 6 页2018版高人一筹之高三数学一轮复习特色专题训练专题27 归纳推理、类比推理与演绎推理一、选择题1. 已知数列: ,即此数列第一项是,接下来两项是,再接下来三项是,依此类推,设是此数列的前项的和,则A. B. C. D. 2一名法官在审理一起珍宝盗窃案时,四名嫌疑人甲、乙、丙、丁的供词如下,甲说:“罪犯在乙、丙、丁三人之中”;乙说:“我没有作案,是丙偷的”;丙说:“甲、乙两人中有一人作了案”;丁说:“乙说的是事实”.经过调查核实,四个人中有两个人说的是真话,另外两人说的是假话,且这四个人中只有一名罪犯,说真话的人是 A. 甲、乙 B. 甲、丙 C. 乙、丁 D. 甲、丁3.如图所示,面积为的平面凸四边形的第条边的边长为,此四边形内在一点到第条边的距离记为,若,则.类比以上性质,体积为的三棱锥的第个面的面积记为,此三棱锥内任一点到第个面的距离记为,若,( ).A. B. C. D. 4已知表示正整数的所有因数中最大的奇数,例如:12的因数有1,2,3,4,6,12,则;21的因数有1,3,7,12,则,那么的值为A. 2488 B. 2495 C. 2498 D. 25005祖暅原理也就是“等积原理”,它是由我国南北朝杰出的数学家祖冲之的儿子祖暅首先提出来的,祖暅原理的内容是:夹在两个平行平面间的两个几何体,被平行于这两个平行平面的平面所截,如果截得两个截面的面积总相等,那么这两个几何体的体积相等已知,两个平行平面间有三个几何体,分别是三棱锥、四棱锥、圆锥(高度都为),其中:三棱锥的底面是正三角形(边长为),四棱锥的底面是有一个角为的菱形(边长为),圆锥的体积为,现用平行于这两个平行平面的平面去截三个几何体,如果截得的三个截面的面积相等,那么,下列关系式正确的是A. B. C. D. 来源:学&科&网Z&X&X&K6.甲、乙两人约好一同去看变形金刚5,两人买完了电影票后,偶遇丙也来看这场电影,此时还剩9张该场电影的电影票,电影票的座位信息如下表1排4号1排5号1排8号2排4号3排1号3排5号4排1号4排2号4排8号丙从这9张电影票中挑选了一张,甲、乙询问丙所选的电影票的座位信息,丙只将排数告诉了甲,只将号数告诉了乙下面是甲、乙关于丙所选电影票的具体座位信息的一段对话:甲对乙说:“我不能确定丙的座位信息,你肯定也不能确定”乙对甲说:“本来我不能确定,但是现在我能确定了”甲对乙说:“哦,那我也能确定了!”根据上面甲、乙的对话,判断丙选择的电影票是A. 4排8号 B. 3排1号 C. 1排4号 D. 1排5号7.中国古代儒家要求学生掌握六种基本才艺:礼、乐、射、御、书、数,简称“六艺”,某中学为弘扬“六艺”的传统文化,分别进行了主题为“礼、乐、射、御、书、数”六场传统文化知识的竞赛,现有甲、乙、丙三位选手进入了前三名的最后角逐、规定:每场知识竞赛前三名的得分都分别为(,且);选手最后得分为各场得分之和,在六场比赛后,已知甲最后得分为26分,乙和丙最后得分都为11分,且乙在其中一场比赛中获得第一名,则下列推理正确的是来源:学&科&网A. 每场比赛第一名得分为4 B. 甲可能有一场比赛获得第二名C. 乙有四场比赛获得第三名 D. 丙可能有一场比赛获得第一名8已知两个半径不等的圆盘叠放在一起(有一轴穿过它们的圆心),两圆盘上分别有互相垂直的两条直径将其分为四个区域,小圆盘上所写的实数分别记为,大圆盘上所写的实数分别记为,如图所示.将小圆盘逆时针旋转次,每次转动,记为转动次后各区域内两数乘积之和,例如. 若, ,则以下结论正确的是A. 中至少有一个为正数 B. 中至少有一个为负数C. 中至多有一个为正数 D. 中至多有一个为负数9.有三支股票, , ,28位股民的持有情况如下:每位股民至少持有其中一支股票,在不持有股票的人中,持有股票的人数是持有股票的人数的2倍.在持有股票的人中,只持有股票的人数比除了持有股票外,同时还持有其它股票的人数多1.在只持有一支股票的人中,有一半持有股票.则只持有股票的股民人数是A. B. C. D. 10如图,将正三角形分割成个边长为1的小正三角形和一个灰色菱形,这个灰色菱形可以分割成个边长为1的小正三角形若,则三角形的边长是A. 10 B. 11 C. 12 D. 1311.老王和小王父子俩玩一种类似于古代印度的“梵塔游戏”;有3个柱子甲、乙、丙,在甲柱上现有4个盘子,最上面的两个盘子大小相同,从第二个盘子往下大小不等,大的在下,小的在上(如图),把这4个盘子从甲柱全部移到乙柱游戏即结束,在移动过程中每次只能移动一个盘子,甲、乙、丙柱都可以利用,且3个柱子上的盘子始终保持小的盘子不能放在大的盘子之下,设游戏结束需要移动的最少次数为,则A. 7 B. 8 C. 11 D. 1512.已知,求证,用反证法证明时,可假设;设为实数, ,求证与中至少有一个不小于,用反证法证明时可假设,且,以下说法正确的是A. 与的假设都错误 B. 与的假设都正确C. 的假设正确,的假设错误 D. 的假设错误,的假设正确13.甲、乙、丙三人中,一人是工人,一人是农民,一人是知识分子.已知:丙的年龄比知识分子大;甲的年龄和农民不同;农民的年龄比乙小.根据以上情况,下列判断正确的是( )A. 甲是工人,乙是知识分子,丙是农民 B. 甲是知识分子,乙是农民,丙是工人C. 甲是知识分子,乙是工人,丙是农民 D. 甲是农民,乙是知识分子,丙是工人14图一是美丽的“勾股树”,它是一个直角三角形分别以它的每一边向外作正方形而得到图二是第1代“勾股树”,重复图二的作法,得到图三为第2 代“勾股树”,以此类推,已知最大的正方形面积为1,则第代“勾股树”所有正方形的个数与面积的和分别为( )来源:学#科#网Z#X#X#KA. B. C. D. 15.九章算术“少广”算法中有这样一个数的序列:列出“全步”(整数部分)及诸分子分母,以最下面的分母遍乘各分子和“全步”,各自以分母去约其分子,将所得能通分之分数进行通分约简,又用最下面的分母去遍乘诸(未通者)分子和以通之数,逐个照此同样方法,直至全部为整数,例如: 及时,如图:记为每个序列中最后一列数之和,则为A. 1089 B. 680 C. 840 D. 2520二、填空题16研究问题:“已知关于的不等式的解集为,解关于的不等式”,有如下解法:由,令,则,所以不等式的解集为,类比上述解法,已知关于的不等式的解集为,则关于的不等式的解集为_.17记 ()表示从起连续个正整数的和.(1)则_;(2)将写成的形式是_.(只须写出一种正确结果即可)18甲乙两人做报数游戏,其规则是:从1开始两人轮流连续报数,每人每次最少报1个数,最多可以连续报6个(如,第一个人先报“1,2”,则另一个人可以有“3”,“3,4”,“3,4,5,6,7,8”等六种报数方法),谁抢先报到“100”则谁获胜.如果从甲开始,则甲要想必胜,第一次报的数应该是_19设的三边长分别为, 的面积为,其内切圆的半径为,则;类比这个结论可知:四面体的四个面的面积分别为,四面体的体积为,其内切球的半径为,则_20已知, , , ,则_.21现有一个关于平面图形的命题:如图,同一个平面内有两个边长都是的正方形,其中一个的某顶点在另一个的中心,则这两个正方形重叠部分的面积恒为. 类比到空间,有两个棱长均为的正方体,其中一个的某顶点在另一个的中心,则这两个正方体重叠部分的体积恒为_.22观察以下三个不等式:来源:学科网 若时,则的最小值为_.