D83二重积分在几何上的应用.ppt
,第三节,一、体积 和平面图形的面积,二、曲面的面积,机动 目录 上页 下页 返回 结束,二重积分在几何上的应用,第八章,1. 能用重积分解决的实际问题的特点,所求量是,对区域具有可加性,从定积分定义出发 建立积分式,用微元分析法 (元素法),分布在有界闭域上的整体量,3. 解题要点,画出积分域、选择坐标系、确定积分序、,定出积分限、计算要简便,2. 用重积分解决问题的方法,机动 目录 上页 下页 返回 结束,一、立体体积,曲顶柱体的顶为连续曲面,则其体积为,占有空间有界域 的立体的体积为,机动 目录 上页 下页 返回 结束,任一点的切平面与曲面,所围立体的体积 V .,解: 曲面,的切平面方程为,它与曲面,的交线在 xoy 面上的投影为,(记所围域为D ),在点,例1. 求曲面,机动 目录 上页 下页 返回 结束,例2. 求半径为a 的球面与半顶角为 的,内接锥面所围成的立体的体积.,解: 在球坐标系下空间立体所占区域为,则立体体积为,机动 目录 上页 下页 返回 结束,二、曲面的面积,设光滑曲面,则面积 A 可看成曲面上各点,处小切平面的面积 d A 无限积累而成.,设它在 D 上的投影为 d ,(称为面积元素),则,机动 目录 上页 下页 返回 结束,故有曲面面积公式,若光滑曲面方程为,则有,即,机动 目录 上页 下页 返回 结束,若光滑曲面方程为,若光滑曲面方程为隐式,则,则有,且,机动 目录 上页 下页 返回 结束,例3. 计算双曲抛物面,被柱面,所截,解: 曲面在 xoy 面上投影为,则,出的面积 A .,机动 目录 上页 下页 返回 结束,例4. 计算半径为 a 的球的表面积.,解:,设球面方程为,球面面积元素为,方法2 利用直角坐标方程. (见书 P202),方法1 利用球坐标方程.,机动 目录 上页 下页 返回 结束,作业,P203 1(1),2,习题课 目录 上页 下页 返回 结束,