欢迎来到淘文阁 - 分享文档赚钱的网站! | 帮助中心 好文档才是您的得力助手!
淘文阁 - 分享文档赚钱的网站
全部分类
  • 研究报告>
  • 管理文献>
  • 标准材料>
  • 技术资料>
  • 教育专区>
  • 应用文书>
  • 生活休闲>
  • 考试试题>
  • pptx模板>
  • 工商注册>
  • 期刊短文>
  • 图片设计>
  • ImageVerifierCode 换一换

    旋转体体积公式(5页).doc

    • 资源ID:36946441       资源大小:136KB        全文页数:5页
    • 资源格式: DOC        下载积分:15金币
    快捷下载 游客一键下载
    会员登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录   QQ登录  
    二维码
    微信扫一扫登录
    下载资源需要15金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    旋转体体积公式(5页).doc

    -旋转体体积公式-第 5 页在传统立体几何中,各种旋转形体的侧(表)面积和体积计算方法是各自独立的,不便学习记忆。本文介绍一个适用于一切旋转形体的万能公式,简单,易学,好用。 一.基本概念 1.质量 空间图形(点,线,面,体)都可以看作是空间点的集合,一个具体的空间图形包含的点数是有限但不可数的。我们把一个空间图形包含的全部点数,称为该图形的质量。 由于图形包含的点数不可数,所以要用间接方式来表示图形的质量。我们可以用长度来表示线的质量,用面积来表示面的质量,用体积来表示体的质量。这就像,一堆小米的粒数是有限但不可数的。尽管这堆小米的粒数一定有一个确切的数字,但这个数字可能我们永远也不会知道,也不必知道,我们只需知道有几斗几升,或几斤几两就行了。 关于质量概念,存在着下面的事实:空间图形的质量,等于它各个部分的质量之和(质量公理)。 2.位量和重心 构成空间图形的点,都有各自的位置。在平面内,点的位置可以用它到参考直线的距离来表示。我们把构成一个空间图形的所有点的位置总和,称为该图形的位量;把构成空间图形的所有点的平均位置,称为该图形的重心,并以它作为整个图形的位置。显然,位量=重心*总点数。用W表示位量,用Z表示重心,用P表示质量,上式可以写成 . W=Z*P (1) 关于位量概念,也存在着下面的事实:空间图形的位量,等于它各个部分的位量之和(位量公理)。 3.旋转基图 旋转面和旋转体可统称为旋转形体。用过旋转轴的平面截切后,得到一个轴对称形的截面图,我们取旋转轴一侧的半图作为旋转基图。旋转面的基图是线,旋转体的基图是由闭合的线围成的面。 二.平面图形的位量和重心 要使用万能公式,需先计算旋转基图的位量,笔者提供以下判断和计算平面图形的位量和重心的方法: 1.形状规则图形的重心是它的几何中心。如圆,正多边形,中心对称图形等。 2.轴对称图形的重心在它的对称轴上 3.形状不规则的图形可以先分解成几个规则或简单的部分,分别求出各部分的位量后,再求总和。常见旋转形体的基图,总可以分解成以下四种图形: (抱歉,因发帖数量不够,无法上传示意图)(1)直线段 直线段的重心是它的中点 (2)圆弧线 如图1,位于位置参考线一侧且圆心在参考线上的圆弧线,其位量等于它在参考线上的投影长度与弧半径的乘积,即W=h*R。 (3)三角形面 三角形面的重心是三个顶点的平均位置,即重心到参考线的距离等于三个顶点分别到参考线距离的平均值。 (4)弓形面 如图2,圆心在位置参考线上,弓弦与参考线平行的弓形面的位量,是弦长立方的十二分之一,即W=a*a*a/12。 如图3,弓弦与参考线不平行的弓形面,可以看作是上述弓形面绕圆心旋转一定角度所得,它的位量还与旋转的角度有关。即W=cos*a*a*a/12 4.如果一个图形的位量是W0,质量是P,则当它的重心改变了Z后,其位量变为W=W0+Z*P 三.旋转形体质量计算的万能公式 在旋转基图中,以旋转轴作为位置参考线,则基图的位量,重心和质量可以分别表示为Wj,Zj,Pj。 已知,圆周长等于半径的2倍,据此可以推导出旋转形体质量计算的统一方法。 定理:旋转形体的质量,等于它的基图位量的2倍。 证明:如图4,旋转基图由有限但不可数的许多空间点构成,它们到旋转轴的距离分别为r1,r2,r3,.,rn。每个点经旋转一周后,都形成一条圆周线,旋转形体由所有圆周线构成。根据质量公理,旋转形体的质量,就是所有圆周线质量的总和。即 P旋=2r1+2r2+2r3+.2rn=2*(r1+r2+r3+.rn)=2*Wj=2*Zj*Pj (证毕) 四.应用举例 (抱歉,因发帖数量不够,无法上传例题示意图)例1.如何理解圆周长公式?答:圆周线是最简单的旋转形体,基图是一个点,其质量是1,它到旋转轴的距离是半径R,所以C=2*Wj=2*Zj*Pj =2*1*R=2R例2.求半径为r的圆的面积。 解:圆可以看作是最简单的旋转形体之一,基图是半径,质量为r,重心为r/2,所以 S=2*Wj=2*Zj*Pj =2*r*r/2=*r*r 例3.求半径为r,高为h的圆柱的侧面积和体积。 解:圆柱侧面的基图是一条线段,长度为h,重心距旋转轴为r,所以 S=2*Wj=2*Zj*Pj =2 *h*r圆柱体的基图是一个矩形面,面积为h*r,重心距旋转轴为r/2,所以 V=2*Wj=2*Zj*Pj =2*h*r*r /2=*h*r*r 例4.求底半径为r,高为h,母线长为l的圆锥的侧面积和体积。 解:圆锥侧面的基图是一条线段,长度为l,重心距旋转轴为r/2,所以 S=2*Wj=2*Zj*Pj =2*l*r/2=*l*r 圆锥体的基图是一个三角形面,质量为S=r*h/2,重心距旋转轴为r/3,所以 V=2*Wj=2*Zj*Pj =2*r*h/2 *r/3=1/3 *r*r*h 例5.求上底半径为r1,下底半径为r2,高为h,母线长为l的圆台的侧面积和体积。 解:圆台侧面的基图是一条线段,长度为l,重心距旋转轴为(r1+r2)/2,所以 S=2*Wj=2*Zj*Pj =2*l*(r1+r2)/2=*l*(r1+r2)圆台体的基图是一个梯形面,它可以分解成两个三角形面,所以 V=2Wj=2(W1+W2)=2r1*h/2 *(r1+0+0)/3 +r2*h/2 *(r1+r2+0)/3 =2*h/6 *(r1*r1+r1*r2+r2*r2) =/3 *h*(r1*r1+r1*r2+r2*r2) 例6.求半径为r的圆球体的表面积和体积。 解:圆球面的基图是一条半圆弧线,圆球体的基图是一个半圆形面,所以 S=2Wj=2*2r*r=4*r*r V=2Wj=2*(2r*2r*2r/12)=4/3 *r*r*r 例7.求球半径R,底半径为r,高为h的球缺的侧面积和体积。 解:球缺的侧面是球冠,基图是一条圆弧线;球缺体的基图可以分解成一个弓形面和一个三角形面,弓形面的位量为W=cos*a*a*a/12=(r*r+h*h)*h/12,所以 S=2Wj=2*h*R V=2Wj=2*(W三角形+W弓形)=2*r*h/2*r/3+(r*r+h*h)*h/12 =2*h/12* (2r*r+r*r+h*h)=/6*h*(3r*r+h*h)由于R*R-r*r=(R-h)*(R-h)r*r=2Rh-h*h,所以V=/6*h*(3r*r+h*h)=/3*h*h*(3R-h)例8.求球半径R,上,下底半径分别为r1,r2,高为h的球台的侧面积和体积。 解:球台的侧面是球带,基图是一条圆弧线;球台体的基图可以分解成一个弓形面和一个梯形面,所以 S= 2Wj=2*h*RW(弓形面)=1/12*(r2-r1)*(r2-r1)+h*h*hW(梯形面)=h/6*(r1*r1+r1*r2+r2*r2)V= 2Wj=2W(弓形面)+W(梯形面)=*h/6*(3r1*r1+3r2*r2+h*h)例9.在一个球体上过圆心车了一个长度为a圆柱形孔洞,求剩余部分的体积。 解:本题用传统方法非常棘手,因为只有孔洞长度这一个条件。但用万能公式却是再简单不过。球体剩余部分的 基图是一个弦长为a的弓形面,所以 V= 2Wj=2*a*a*a/12=*a*a*a/6例10.求圆x2+(y-a)2=b2绕X轴旋转所成几何体的表面积和体积解:旋转所成的几何体是个环。在传统立体几何教材中,环体作为复杂图形不介绍其表面积和体积计算,但在万能公式法中,环体却是最简单的形体之一。环体表面的基图是闭合的圆周线,质量是其周长,重心是其圆心;环体的基图是个圆面,质量是其面积,重心也是其圆心;所以S=2*Wj=2*Zj*Pj =2*2b*a=4*a*bV=2*Wj=2*Zj*Pj =2*b*b*a=2*a *b*b例11.求边长为a的正六边形绕一边旋转所成几何体的表面积和体积。解:传统方法是通过割补成圆柱,圆锥,圆台来计算,非常麻烦,尤其当多边形的边数很多时。用万能公式法则非常简单。图形中心即是其重心,边心距k=3开平方/2*a,所以S=2*Wj=2*Zj*Pj =2*6a*k=12*a*kV=2*Wj=2*Zj*Pj =2*(6a*k/2)*k=6*a *k*k严格说,旋转所成几何体表面的基图只有5条边,且不闭合,需补一条边才能成为正六边形线框,但因补上的这条边恰在旋转轴上,位量为0,不影响整个基图的位量,所以可以用正六边形线框作为基图。在计算圆柱表面积时,也可以采用同一思路。例12.半径为R的圆周被长度为a的弦分成两段弧,求这两段弧分别绕弦旋转所成形体的表面积解:如果两段弧长度不等,则所成形体分别为柠檬形和苹果形。劣弧可看作是圆心原在旋转轴上的弧朝旋转轴方向平移后所得,移动距离为弦心距k=(2R*2R-a*a)开平方后再/2,弧长l=2R*arcsin(a/2R),所以W(劣弧)=2*R*a-l*kS1=2*W(劣弧)又因为整个圆周的位量为W=2*R*k,且两段弧分居参考线两侧,位量正负相反,所以W(优弧)=W-W(劣弧)=2*R*k+W(劣弧)S2=2*W(优弧)=4*R*k+S1用类似办法还可以求出上述两种形体的体积,而在传统立体几何中,表面积和体积计算必须使用微积分。.上面12例介绍了常见旋转形体的侧(表)面积和体积计算,万能公式的应用当然不止这些。万能公式把对立体图形的分析变成了对平面图形的分析,因而更清晰,简单。只需记住一个公式,便可解决所有旋转形体的计算问题

    注意事项

    本文(旋转体体积公式(5页).doc)为本站会员(1595****071)主动上传,淘文阁 - 分享文档赚钱的网站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知淘文阁 - 分享文档赚钱的网站(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于淘文阁 - 版权申诉 - 用户使用规则 - 积分规则 - 联系我们

    本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

    工信部备案号:黑ICP备15003705号 © 2020-2023 www.taowenge.com 淘文阁 

    收起
    展开