欢迎来到淘文阁 - 分享文档赚钱的网站! | 帮助中心 好文档才是您的得力助手!
淘文阁 - 分享文档赚钱的网站
全部分类
  • 研究报告>
  • 管理文献>
  • 标准材料>
  • 技术资料>
  • 教育专区>
  • 应用文书>
  • 生活休闲>
  • 考试试题>
  • pptx模板>
  • 工商注册>
  • 期刊短文>
  • 图片设计>
  • ImageVerifierCode 换一换

    中考数学常见几何模型简介(10页).doc

    • 资源ID:36947261       资源大小:9.19MB        全文页数:10页
    • 资源格式: DOC        下载积分:15金币
    快捷下载 游客一键下载
    会员登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录   QQ登录  
    二维码
    微信扫一扫登录
    下载资源需要15金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    中考数学常见几何模型简介(10页).doc

    -中考数学常见几何模型简介-第 10 页初中几何常见模型解析 模型一:手拉手模型-旋转型全等(1)等边三角形 条件:均为等边三角形 结论:;平分。(2)等腰 条件:均为等腰直角三角形 结论:; 平分。(3)任意等腰三角形 条件:均为等腰三角形 结论:; 平分。 模型二:手拉手模型-旋转型相似(1)一般情况 条件:,将旋转至右图位置 结论: 右图中; 延长AC交BD于点E,必有(2)特殊情况 条件:,将旋转至右图位置 结论:右图中;延长AC交BD于点E,必有;连接AD、BC,必有;(对角线互相垂直的四边形) 模型三:对角互补模型(1)全等型-90° 条件:;OC平分 结论:CD=CE; ; 证明提示:作垂直,如图,证明; 过点C作,如上图(右),证明; 当的一边交AO的延长线于点D时:以上三个结论:CD=CE(不变); 此结论证明方法与前一种情况一致,可自行尝试。(2)全等型-120° 条件:; 平分; 结论:; 证明提示:可参考“全等型-90°”证法一;如图:在OB上取一点F,使OF=OC,证明为等边三角形。 当的一边交AO的延长线于点D时(如上图右):原结论变成: ; ; ;可参考上述第种方法进行证明。(3)全等型-任意角 条件:; 结论:平分; . 当的一边交AO的延长线于点D时(如右上图):原结论变成: ; ; ;可参考上述第种方法进行证明。请思考初始条件的变化对模型的影响。如图所示,若将条件“平分”去掉,条件不变,平分,结论变化如下:结论:;. 对角互补模型总结:常见初始条件:四边形对角互补; 注意两点:四点共圆及直角三角形斜边中线;初始条件“角平分线”与“两边相等”的区别;两种常见的辅助线作法;注意下图中平分时,相等是如何推导的? 模型四:角含半角模型90°(1)角含半角模型90°-1 条件:正方形; 结论:;的周长为正方形周长的一半;也可以这样: 条件:正方形; 结论:(2)角含半角模型90°-2 条件:正方形; 结论: 辅助线如下图所示:(3)角含半角模型90°-3 条件:; 结论:若旋转到外部时,结论仍然成立。(4)角含半角模型90°变形 条件:正方形; 结论:为等腰直角三角形。 模型五:倍长中线类模型(1)倍长中线类模型-1 条件:矩形;;; 结论:模型提取:有平行线;平行线间线段有中点; 可以构造“8”字全等。(2)倍长中线类模型-2 条件:平行四边形;. 结论: 模型六:相似三角形360°旋转模型(1)相似三角形(等腰直角)360°旋转模型-倍长中线法 条件:、均为等腰直角三角形; 结论:;(1)相似三角形(等腰直角)360°旋转模型-补全法 条件:、均为等腰直角三角形; 结论:;(2)任意相似直角三角形360°旋转模型-补全法 条件:;;。 结论:;(2)任意相似直角三角形360°旋转模型-倍长法 条件:;;。 结论:; 模型七:最短路程模型(1)最短路程模型一(将军饮马类)(2)最短路程模型二(点到直线类1) 条件:平分;为上一定点;为上一动点;为上一动点; 求:最小时,的位置?(3)最短路程模型二(点到直线类2) (4)最短路程模型二(点到直线类3) 条件: 问题:为何值时,最小 求解方法:轴上取,使;过作,交轴于点,即为所求; ,即.(5)最短路程模型三(旋转类最值模型) (6)最短路程模型三(动点在圆上) 模型八:二倍角模型 模型九:相似三角形模型(1)相似三角形模型-基本型 (2)相似三角形模型-斜交型(3)相似三角形模型-一线三角型 (4)相似三角形模型-圆幂定理型

    注意事项

    本文(中考数学常见几何模型简介(10页).doc)为本站会员(1595****071)主动上传,淘文阁 - 分享文档赚钱的网站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知淘文阁 - 分享文档赚钱的网站(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于淘文阁 - 版权申诉 - 用户使用规则 - 积分规则 - 联系我们

    本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

    工信部备案号:黑ICP备15003705号 © 2020-2023 www.taowenge.com 淘文阁 

    收起
    展开