欢迎来到淘文阁 - 分享文档赚钱的网站! | 帮助中心 好文档才是您的得力助手!
淘文阁 - 分享文档赚钱的网站
全部分类
  • 研究报告>
  • 管理文献>
  • 标准材料>
  • 技术资料>
  • 教育专区>
  • 应用文书>
  • 生活休闲>
  • 考试试题>
  • pptx模板>
  • 工商注册>
  • 期刊短文>
  • 图片设计>
  • ImageVerifierCode 换一换

    新课标高中数学必修2知识点总结经典(6页).doc

    • 资源ID:37014948       资源大小:719.50KB        全文页数:6页
    • 资源格式: DOC        下载积分:20金币
    快捷下载 游客一键下载
    会员登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录   QQ登录  
    二维码
    微信扫一扫登录
    下载资源需要20金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    新课标高中数学必修2知识点总结经典(6页).doc

    -新课标高中数学必修2知识点总结经典-第 6 页新课标高中数学必修2知识点总结经典第一章 空间几何体1.1空间几何体的结构1、 棱柱定义:有两个面互相平行,其余各面都是四边形,且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体。分类:以底面多边形的边数作为分类的标准分为三棱柱、四棱柱、五棱柱等。表示:用各顶点字母,如五棱柱或用对角线的端点字母,如五棱柱几何特征:两底面是对应边平行的全等多边形;侧面、对角面都是平行四边形;侧棱平行且相等;平行于底面的截面是与底面全等的多边形。2、 棱锥定义:有一个面是多边形,其余各面都是有一个公共顶点的三角形,由这些面所围成的几何体分类:以底面多边形的边数作为分类的标准分为三棱锥、四棱锥、五棱锥等表示:用各顶点字母,如五棱锥几何特征:侧面、对角面都是三角形;平行于底面的截面与底面相似,其相似比等于顶点到截面距离与高的比的平方。3、 棱台定义:用一个平行于棱锥底面的平面去截棱锥,截面和底面之间的部分分类:以底面多边形的边数作为分类的标准分为三棱态、四棱台、五棱台等表示:用各顶点字母,如四棱台ABCDA'B'C'D'几何特征:上下底面是相似的平行多边形 侧面是梯形 侧棱交于原棱锥的顶点4、 圆柱 定义:以矩形的一边所在的直线为轴旋转,其余三边旋转所成的曲面所围成的几何体几何特征:底面是全等的圆;母线与轴平行;轴与底面圆的半径垂直;侧面展开图是一个矩形。5、 圆锥定义:以直角三角形的一条直角边为旋转轴,旋转一周所成的曲面所围成的几何体几何特征:底面是一个圆;母线交于圆锥的顶点;侧面展开图是一个扇形。6、圆台定义:用一个平行于圆锥底面的平面去截圆锥,截面和底面之间的部分几何特征:上下底面是两个圆;侧面母线交于原圆锥的顶点;侧面展开图是一个弓形。球体定义:以半圆的直径所在直线为旋转轴,半圆面旋转一周形成的几何体几何特征:球的截面是圆;球面上任意一点到球心的距离等于半径。空间几何体的结构特征:面(侧面、上底面、下底面)、棱、顶点、轴1.2空间几何体的三视图和直观图1、 中心投影与平行投影中心投影:把光由一点向外散射形成的投影叫做中心投影。平行投影:在一束平行光照射下形成的投影叫做平行投影。2、 三视图 正视图:从前往后 侧视图:从左往右 俯视图:从上往下画三视图的原则:长对齐、高对齐、宽相等3、直观图:斜二测画法斜二测画法的步骤:(1).平行于坐标轴的线依然平行于坐标轴;(2).平行于y轴的线长度变半,平行于x,z轴的线长度不变;(3).画法要写好。用斜二测画法画出长方体的步骤:(1)画轴(2)画底面(3)画侧棱(4)成图1.3空间几何体的表面积与体积(1)几何体的表面积为几何体各个面的面积的和。(2)特殊几何体表面积公式(c为底面周长,h为高,为斜高,l为母线)(3)柱体、锥体、台体的体积公式(4) 球体的表面积和体积公式:V= ; S=第二章 点、直线、平面之间的位置关系及其论证1 、公理1:如果一条直线上两点在一个平面内,那么这条直线在此平面内 公理1的作用:判断直线是否在平面内2、公理2:过不在一条直线上的三点,有且只有一个平面。 若A,B,C不共线,则A,B,C确定平面推论1:过直线的直线外一点有且只有一个平面 若,则点A和确定平面推论2:过两条相交直线有且只有一个平面 若,则确定平面推论3:过两条平行直线有且只有一个平面 若,则确定平面公理2及其推论的作用:确定平面;判定多边形是否为平面图形的依据。3、公理3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线。公理3作用:(1)判定两个平面是否相交的依据;(2)证明点共线、线共点等。4、公理4:也叫平行公理,平行于同一条直线的两条直线平行.5、定理:空间中如果两个角的两边分别对应平行,那么这两个角相等或互补。作用:该定理也叫等角定理,可以用来证明空间中的两个角相等。6、线线位置关系:平行、相交、异面。(1)没有任何公共点的两条直线平行(2)有一个公共点的两条直线相交(3)不同在任何一个平面内的两条直线叫异面直线 7、线面位置关系:直线在平面内、平行、相交8、面面位置关系:平行、相交。9、线面平行:(即直线与平面无任何公共点)判定定理:平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行。(只需在平面内找一条直线和平面外的直线平行就可以) 证明两直线平行的主要方法是: 三角形中位线定理:三角形中位线平行并等于底边的一半; 平行四边形的性质:平行四边形两组对边分别平行; 线面平行的性质:如果一条直线平行于一个平面,经过这条直线的平面与这个平面相交,那么这条直线和它们的交线平行; 平行线的传递性: 面面平行的性质:如果一个平面与两个平行平面相交,那么它们的交线平行; 垂直于同一平面的两直线平行; 直线与平面平行的性质:如果一条直线平行于一个平面,经过这条直线的平面与这个平面相交,那么这条直线和它们的交线平行;(上面的)10、面面平行:(即两平面无任何公共点) (1)判定定理:一个平面内的两条相交直线与另一个平面平行,则这两个平面平行。 (2)两平面平行的性质: 性质:如果一个平面与两平行平面都相交,那么它们的交线平行; 性质:平行于同一平面的两平面平行; 性质:夹在两平行平面间的平行线段相等; 性质:两平面平行,一平面上的任一条直线与另一个平面平行;11、线面垂直:定义:如果一条直线垂直于一个平面内的任意一条直线,那么就说这条直线和这个平面垂直。判定:一条直线与一个平面内的两条相交直线都垂直,则该直线与此平面垂直。性质:垂直于同一个平面的两条直线平行。性质:垂直于同一直线的两平面平行 12、面面垂直:定义:两个平面相交,如果它们所成的二面角是直二面角,就说这两个平面互相垂直。判定:一个平面经过另一个平面的一条垂线,则这两个平面垂直。 (只需在一个平面内找到另一个平面的垂线就可证明面面垂直)性质:两个平面互相垂直,则一个平面内垂直于交线的直线垂直于另一个平面。证明两直线垂直和主要方法:利用勾股定理证明两相交直线垂直;利用等腰三角形三线合一证明两相交直线垂直;利用线面垂直的定义证明(特别是证明异面直线垂直);利用三垂线定理证明两直线垂直(“三垂”指的是“线面垂”“线影垂”,“线斜垂”)空间角及空间距离的计算1. 异面直线所成角:使异面直线平移后相交形成的夹角,通常在两异面直线中的一条上取一点,过该点作另一条直线平行线,2. 斜线与平面成成的角:斜线与它在平面上的射影成的角。如图:PA是平面的一条斜线,A为斜足,O为垂足,OA叫斜线PA在平面上射影,为线面角。3.二面角:从一条直线出发的两个半平面形成的图形,如图为二面角,二面角的大小指的是二面角的平面角的大小。二面角的平面角分别在两个半平面内且角的两边与二面角的棱垂直 用二面角的平面角的定义求二面角的大小的关键点是: 确构成二面角两个半平面和棱;明确二面角的平面角是哪个? 而要想明确二面角的平面角,关键是看该角的两边是否都和棱垂直。 (求空间角的三个步骤是“一找”、“二证”、“三计算”)5.点到平面的距离:指该点与它在平面上的射影的连线段的长度。如图:O为P在平面上的射影,线段OP的长度为点P到平面的距离求法通常有:定义法和等体积法等体积法:就是将点到平面的距离看成是三棱锥的一个高。如图在三棱锥中有:第三章直线与方程3.1直线的倾斜角与斜率(1)直线的倾斜角定义:x轴正向与直线向上方向之间所成的角叫直线的倾斜角。特别地,当直线与x轴平行或重合时,我们规定它的倾斜角为0度。因此,倾斜角的取值范围是0°180°(2)直线的斜率定义:倾斜角不是90°的直线,它的倾斜角的正切叫做这条直线的斜率。直线的斜率常用k表示。即。斜率反映直线与轴的倾斜程度。当时,; 当时,; 当时,不存在。过两点的直线的斜率公式: 注意:(1)当时,公式右边无意义,直线的斜率不存在,倾斜角为90°;(2)k与P1、P2的顺序无关;(3)以后求斜率可不通过倾斜角而由直线上两点的坐标直接求得;(4)求直线的倾斜角可由直线上两点的坐标先求斜率得到。3.2直线的方程点斜式:直线斜率k,且过点注意:当直线的斜率为0°时,k=0,直线的方程是y=y1。当直线的斜率为90°时,直线的斜率不存在,它的方程不能用点斜式表示但因l上每一点的横坐标都等于x1,所以它的方程是x=x1。斜截式:,直线斜率为k,直线在y轴上的截距为b两点式:()直线两点,截矩式:其中直线与轴交于点,与轴交于点,即与轴、轴的截距分别为。一般式:(A,B不全为0)注意:各式的适用范围 特殊的方程如:平行于x轴的直线:(b为常数); 平行于y轴的直线:(a为常数); (5)直线系方程:即具有某一共同性质的直线(一)平行直线系平行于已知直线(是不全为0的常数)的直线系:(C为常数)(二)过定点的直线系()斜率为k的直线系:,直线过定点;()过两条直线,的交点的直线系方程为(为参数),其中直线不在直线系中。(6)两直线平行与垂直当,时,注意:利用斜率判断直线的平行与垂直时,要注意斜率的存在与否。3.3直线的交点坐标与距离公式1、两条直线的交点 相交交点坐标即方程组的一组解。方程组无解 ; 方程组有无数解与重合2、两点间距离公式:设是平面直角坐标系中的两个点,则 3、点到直线距离公式:一点到直线的距离4、两平行直线距离公式在任一直线上任取一点,再转化为点到直线的距离进行求解。第四章圆与方程4.1圆的方程1、圆的定义:平面内到一定点的距离等于定长的点的集合叫圆,定点为圆心,定长为圆的半径。2、圆的方程(1)标准方程,圆心,半径为r;(2)一般方程当时,方程表示圆,此时圆心为,半径为当时,表示一个点; 当时,方程不表示任何图形。(3)求圆方程的方法:一般都采用待定系数法:先设后求。确定一个圆需要三个独立条件,若利用圆的标准方程,需求出a,b,r;若利用一般方程,需要求出D,E,F;另外要注意多利用圆的几何性质:如弦的中垂线必经过原点,以此来确定圆心的位置。4.2直线、圆的位置关系1、直线与圆的位置关系有相离,相切,相交三种情况,基本上由下列两种方法判断:(1)设直线,圆,圆心到l的距离为,则有;(2) 设直线,圆,先将方程联立消元,得到一个一元二次方程之后,令其中的判别式为,则有注:如果圆心的位置在原点,可使用公式去解直线与圆相切的问题,其中表示切点坐标,r表示半径。 (3)过圆上一点的切线方程:圆x2+y2=r2,圆上一点为(x0,y0),则过此点的切线方程为圆(x-a)2+(y-b)2=r2,圆上一点为(x0,y0),则过此点的切线方程为(x0-a)(x-a)+(y0-b)(y-b)= r2 2、圆与圆的位置关系:通过两圆半径的和(差),与圆心距(d)之间的大小比较来确定。设圆,两圆的位置关系常通过两圆半径的和(差),与圆心距(d)之间的大小比较来确定。当时两圆外离,此时有公切线四条;当时两圆外切,连心线过切点,有外公切线两条,内公切线一条;当时两圆相交,连心线垂直平分公共弦,有两条外公切线;当时,两圆内切,连心线经过切点,只有一条公切线;当时,两圆内含; 当时,为同心圆。4.3空间直角坐标系(1)定义:如图,是单位正方体.以A为原点,分别以OD,O,OB的方向为正方向,建立三条数轴。这时建立了一个空间直角坐标系Oxyz.1) O叫做坐标原点 2) x 轴,y轴,z轴叫做坐标轴.3) 过每两个坐标轴的平面叫做坐标面。(2) 右手表示法: 令右手大拇指、食指和中指相互垂直时,可能形成的位置。大拇指指向为x轴正方向,食指指向为y轴正向,中指指向则为z轴正向,这样也可以决定三轴间的相位置。(3)任意点坐标表示:空间一点M的坐标可以用有序实数组来表示,有序实数组 叫做点M在此空间直角坐标系中的坐标,记作(x叫做点M的横坐标,y叫做点M的纵坐标,z叫做点M的竖坐标)(4)空间两点距离坐标公式:

    注意事项

    本文(新课标高中数学必修2知识点总结经典(6页).doc)为本站会员(1595****071)主动上传,淘文阁 - 分享文档赚钱的网站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知淘文阁 - 分享文档赚钱的网站(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于淘文阁 - 版权申诉 - 用户使用规则 - 积分规则 - 联系我们

    本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

    工信部备案号:黑ICP备15003705号 © 2020-2023 www.taowenge.com 淘文阁 

    收起
    展开