欢迎来到淘文阁 - 分享文档赚钱的网站! | 帮助中心 好文档才是您的得力助手!
淘文阁 - 分享文档赚钱的网站
全部分类
  • 研究报告>
  • 管理文献>
  • 标准材料>
  • 技术资料>
  • 教育专区>
  • 应用文书>
  • 生活休闲>
  • 考试试题>
  • pptx模板>
  • 工商注册>
  • 期刊短文>
  • 图片设计>
  • ImageVerifierCode 换一换

    椭圆问题中最值得关注的基本题型(17页).doc

    • 资源ID:37016089       资源大小:447.50KB        全文页数:15页
    • 资源格式: DOC        下载积分:15金币
    快捷下载 游客一键下载
    会员登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录   QQ登录  
    二维码
    微信扫一扫登录
    下载资源需要15金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    椭圆问题中最值得关注的基本题型(17页).doc

    -椭圆问题中最值得关注的基本题型-第 15 页椭圆问题中最值得关注的基本题型题型分析·高考展望椭圆问题在高考中占有比较重要的地位,并且占的分值也较多.分析历年的高考试题,在填空题、解答题中都涉及到椭圆的题,所以我们对椭圆知识必须系统的掌握.对各种题型,基本的解题方法也要有一定的了解.常考题型精析题型一利用椭圆的几何性质解题例1如图,焦点在x轴上的椭圆1的离心率e,F,A分别是椭圆的一个焦点和顶点,P是椭圆上任意一点,求·的最大值和最小值.点评熟练掌握椭圆的几何性质是解决此类问题的根本,利用离心率和椭圆的范围可以求解范围问题、最值问题,利用a、b、c之间的关系和椭圆的对称性可构造方程.变式训练1(2014·课标全国)已知点A(0,2),椭圆E:1(a>b>0)的离心率为,F是椭圆E的右焦点,直线AF的斜率为,O为坐标原点.(1)求E的方程;(2)设过点A的动直线l与E相交于P,Q两点,当OPQ的面积最大时,求l的方程.题型二直线与椭圆相交问题例2(2015·山东)在平面直角坐标系xOy中,已知椭圆C:1(ab0)的离心率为,左,右焦点分别是F1,F2.以F1为圆心、以3为半径的圆与以F2为圆心、以1为半径的圆相交,且交点在椭圆C上.(1)求椭圆C的方程;(2)设椭圆E:1,P为椭圆C上任意一点,过点P的直线ykxm交椭圆E于A,B两点,射线PO交椭圆E于点Q.()求的值;()求ABQ面积的最大值.点评解决直线与椭圆相交问题的一般思路:将直线方程与椭圆方程联立,转化为一元二次方程,由判别式范围或根与系数的关系解决.求范围或最值问题,也可考虑求“交点”,由“交点”在椭圆内(外),得出不等式,解不等式.变式训练2(2014·四川)已知椭圆C:1 (a>b>0)的焦距为4,其短轴的两个端点与长轴的一个端点构成正三角形.(1)求椭圆C的标准方程;(2)设F为椭圆C的左焦点,T为直线x3上任意一点,过F作TF的垂线交椭圆C于点P,Q.证明OT平分线段PQ(其中O为坐标原点);当最小时,求点T的坐标.题型三利用“点差法,设而不求思想”解题例3已知椭圆y21,求斜率为2的平行弦的中点轨迹方程.点评当涉及平行弦的中点轨迹,过定点的弦的中点轨迹,过定点且被定点平分的弦所在直线方程时,用“点差法”来求解.变式训练3(2015·扬州模拟)已知椭圆1(a>b>0)的一个顶点为B(0,4),离心率e,直线l交椭圆于M,N两点.(1)若直线l的方程为yx4,求弦MN的长.(2)如果BMN的重心恰好为椭圆的右焦点F,求直线l方程的一般式.高考题型精练1.(2015·课标全国改编)已知椭圆E的中心在坐标原点,离心率为,E的右焦点与抛物线C:y28x的焦点重合,A,B是C的准线与E的两个交点,则AB_.2.(2014·大纲全国改编)已知椭圆C:1(a>b>0)的左、右焦点分别为F1、F2,离心率为,过F2的直线l交C于A、B两点.若AF1B的周长为4,则C的方程为_.3.(2014·福建改编)设P,Q分别为圆x2(y6)22和椭圆y21上的点,则P,Q两点间的最大距离是_.4.若椭圆和双曲线具有相同的焦点F1,F2,离心率分别为e1,e2,P是两曲线的一个公共点,且满足PF1PF2,则的值为_.5.椭圆C:1 (a>b>0)的两个焦点为F1,F2,M为椭圆上一点,且·的最大值的取值范围是c2,2c2,其中c是椭圆的半焦距,则椭圆的离心率取值范围是_.6.(2014·辽宁)已知椭圆C:1,点M与C的焦点不重合.若M关于C的焦点的对称点分别为A,B,线段MN的中点在C上,则ANBN_.7.(2014·江西)过点M(1,1)作斜率为的直线与椭圆C:1(a>b>0)相交于A,B两点,若M是线段AB的中点,则椭圆C的离心率等于_.8.(2014·安徽)设F1,F2分别是椭圆E:x21(0<b<1)的左,右焦点,过点F1的直线交椭圆E于A,B两点.若AF13F1B,AF2x轴,则椭圆E的方程为_.9.(2014·江苏)如图,在平面直角坐标系xOy中,F1,F2分别是椭圆1(a>b>0)的左,右焦点,顶点B的坐标为(0,b),连接BF2并延长交椭圆于点A,过点A作x轴的垂线交椭圆于另一点C,连结F1C.(1)若点C的坐标为,且BF2,求椭圆的方程;(2)若F1CAB,求椭圆离心率e的值.10.(2015·重庆)如图,椭圆1(ab0)的左,右焦点分别为F1,F2,过F2的直线交椭圆于P、Q两点,且PQPF1.(1)若PF12,PF22,求椭圆的标准方程;(2)若PF1PQ,求椭圆的离心率e.11.(2015·陕西)已知椭圆E:1(ab0)的半焦距为c,原点O到经过两点(c,0),(0,b)的直线的距离为c.(1)求椭圆E的离心率;(2)如图,AB是圆M:(x2)2(y1)2的一条直径,若椭圆E经过A,B两点,求椭圆E的方程.12.(2015·泰州模拟)已知椭圆G:1(a>b>0)的离心率为,右焦点为(2,0).斜率为1的直线l与椭圆G交于A,B两点,以AB为底边作等腰三角形,顶点为P(3,2).(1)求椭圆G的方程;(2)求PAB的面积.答案精析第29练椭圆问题中最值得关注的基本题型常考题型典例剖析例1解设P点坐标为(x0,y0).由题意知a2,e,c1,b2a2c23.所求椭圆方程为1.2x02,y0.又F(1,0),A(2,0),(1x0,y0),(2x0,y0),·xx02yxx01(x02)2.当x02时,·取得最小值0,当x02时,·取得最大值4.变式训练1解(1)设F(c,0),由条件知,得c.又,所以a2,b2a2c21.故E的方程为y21.(2)当lx轴时不合题意,故设l:ykx2,P(x1,y1),Q(x2,y2),将ykx2代入y21得(14k2)x216kx120.当16(4k23)>0,即k2>时,x1,2.从而PQ|x1x2|.又点O到直线PQ的距离d,所以OPQ的面积SOPQ·d·PQ.设t,则t>0,SOPQ.因为t4,当且仅当t2,即k±时等号成立,且满足>0,所以,当OPQ的面积最大时l的方程为yx2或yx2.例2解(1)由题意知2a4,则a2,又,a2c2b2,可得b1,所以椭圆C的方程为y21.(2)由(1)知椭圆E的方程为1.()设P(x0,y0),由题意知Q(x0,y0).因为y1,又1,即1,所以2,即2.()设A(x1,y1),B(x2,y2).将ykxm代入椭圆E的方程,可得(14k2)x28kmx4m2160,由0,可得m2416k2,则有x1x2,x1x2.所以|x1x2|.因为直线ykxm与y轴交点的坐标为(0,m),所以OAB的面积S|m|x1x2|2.设t,将ykxm代入椭圆C的方程,可得(14k2)x28kmx4m240,由0,可得m214k2.由可知0t1,因此S22,故S2,当且仅当t1,即m214k2时取得最大值2.由()知,ABQ面积为3S,所以ABQ面积的最大值为6.变式训练2(1)解由已知可得解得a26,b22,所以椭圆C的标准方程是1.(2)证明由(1)可得F的坐标是(2,0),设T点的坐标为(3,m),则直线TF的斜率kTFm.当m0时,直线PQ的斜率kPQ,直线PQ的方程是xmy2.当m0时,直线PQ的方程是x2,也符合xmy2的形式.设P(x1,y1),Q(x2,y2),将直线PQ的方程与椭圆C的方程联立,得消去x,得(m23)y24my20,其判别式16m28(m23)>0,所以y1y2,y1y2,x1x2m(y1y2)4.所以PQ的中点M的坐标为(,).所以直线OM的斜率kOM.又直线OT的斜率kOT,所以点M在直线OT上,因此OT平分线段PQ.解由可得TF,PQ .所以 .当且仅当m21,即m±1时,等号成立,此时取得最小值.所以当最小时,T点的坐标是(3,1)或(3,1).例3解设弦的两端点分别为M(x1,y1),N(x2,y2),MN的中点为R(x,y),则x2y2,x2y2,两式相减并整理可得,将2代入式,得所求的轨迹方程为x4y0(<x<).变式训练3解(1)由已知得b4,且,即,解得a220,椭圆的方程为1.则4x25y280与yx4联立,消去y得9x240x0,x10,x2,所求弦长MN|x2x1|.(2)如图,椭圆右焦点F的坐标为(2,0),设线段MN的中点为Q(x0,y0),由三角形重心的性质知2,又B(0,4),(2,4)2(x02,y0),故得x03,y02,即得Q的坐标为(3,2).设M(x1,y1),N(x2,y2),则x1x26,y1y24,且1,1,以上两式相减得0,kMN·×,故直线MN的方程为y2(x3),即6x5y280.常考题型精练1.6解析因为e,y28x的焦点为(2,0),所以c2,a4,故椭圆方程为1,将x2代入椭圆方程,解得y±3,所以AB6.2.1解析由e得.又AF1B的周长为4,由椭圆定义,得4a4,得a,代入得c1,b2a2c22,故C的方程为1.3.6解析如图所示,设以(0,6)为圆心,以r为半径的圆的方程为x2(y6)2r2(r>0),与椭圆方程y21联立得方程组,消掉x2得9y212yr2460.令1224×9(r246)0,解得r250,即r5.由题意易知P,Q两点间的最大距离为r6.4.2解析由题意设焦距为2c,椭圆的长轴长为2a,双曲线的实轴长为2m,不妨令P在双曲线的右支上.由双曲线的定义知|PF1|PF2|2m,由椭圆的定义知|PF1|PF2|2a,又PF1PF2,F1PF290°,|PF1|2|PF2|24c2,式的平方加上式的平方得|PF1|2|PF2|22a22m2,由得a2m22c2,即2,2.5.解析设M(x0,y0),则(cx0,y0),(cx0,y0),·xc2yxc2b2xc2b2xc2b2.x0a,a,当x0±a时,·有最大值b2,c2b22c2,c2a2c22c2,2c2a23c2,e.6.12解析椭圆1中,a3.如图,设MN的中点为D,则DF1DF22a6.D,F1,F2分别为MN,AM,BM的中点,BN2DF2,AN2DF1,ANBN2(DF1DF2)12.7.解析设A(x1,y1),B(x2,y2),则0,·.,x1x22,y1y22,a22b2.又b2a2c2,a22(a2c2),a22c2,.8.x2y21解析设点B的坐标为(x0,y0).x21,F1(,0),F2(,0).AF2x轴,A(,b2).AF13F1B,3,(2,b2)3(x0,y0).x0,y0.点B的坐标为.将B代入x21,得b2.椭圆E的方程为x2y21.9.解设椭圆的焦距为2c,则F1(c,0),F2(c,0).(1)因为B(0,b),所以BF2a.又BF2,故a.因为点C在椭圆上,所以1,解得b21.故所求椭圆的方程为y21.(2)因为B(0,b),F2(c,0)在直线AB上,所以直线AB的方程为1.解方程组得所以点A的坐标为.又AC垂直于x轴,由椭圆的对称性,可得点C的坐标为.因为直线F1C的斜率为,直线AB的斜率为,且F1CAB,所以·1.又b2a2c2,整理得a25c2.故e2,因此e.10.解(1)由椭圆的定义,得2aPF1PF2(2)(2)4,故a2.设椭圆的半焦距为c,由已知PF1PF2,因此2cF1F22,即c,从而b1.故所求椭圆的标准方程为y21.(2)方法一如图,设点P(x0,y0)在椭圆上,且PF1PF2,则1,xyc2,求得x0± ,y0±.由PF1PQPF2得x00,从而PF2.2(a2b2)2a(a)2.由椭圆的定义,PF1PF22a,QF1QF22a,从而由PF1PQPF2QF2,有QF14a2PF1.又由PF1PQ,PF1PQ,知QF1PF1,因此,(2)PF14a,即(2)(a)4a,于是(2)(1)4,解得e .方法二如图,由椭圆的定义,得PF1PF22a,QF1QF22a.从而由PF1PQPF2QF2,有QF14a2PF1.又由PF1PQ,PF1PQ,知QF1PF1,因此,4a2PF1PF1,得PF12(2)a,从而PF22aPF12a2(2)a2(1)a.由PF1PF2,知PFPFF1F(2c)2,因此e.11.解(1)过点(c,0),(0,b)的直线方程为bxcybc0,则原点O到该直线的距离d,由dc,得a2b2,解得离心率.(2)方法一由(1)知,椭圆E的方程为x24y24b2.依题意,圆心M(2,1)是线段AB的中点,且AB.易知,AB与x轴不垂直,设其方程为yk(x2)1,代入得(14k2)x28k(2k1)x4(2k1)24b20,设A(x1,y1),B(x2,y2),则x1x2,x1x2,由x1x24,得4,解得k,从而x1x282b2.于是AB |x1x2|,由AB,得,解得b23,故椭圆E的方程为1.方法二由(1)知,椭圆E的方程为x24y24b2,依题意,点A,B关于圆心M(2,1)对称,且AB,设A(x1,y1),B(x2,y2),则x4y4b2,x4y4b2,两式相减并结合x1x24,y1y22,得4(x1x2)8(y1y2)0,易知AB与x轴不垂直,则x1x2,所以AB的斜率kAB,因此直线AB的方程为y(x2)1,代入得x24x82b20,所以x1x24,x1x282b2,于是AB |x1x2|.由AB,得,解得b23,故椭圆E的方程为1.12.解(1)由已知得c2,解得a2.又b2a2c24,所以椭圆G的方程为1.(2)设直线l的方程为yxm,由消去y得4x26mx3m2120.设A,B的坐标分别为(x1,y1),(x2,y2)(x1<x2),AB中点为E(x0,y0),则x0,y0x0m.因为AB是等腰PAB的底边,所以PEAB,所以PE的斜率k1,解得m2.此时方程为4x212x0,解得x13,x20,所以y11,y22.所以AB3,又点P(3,2)到直线AB:xy20的距离d.所以PAB的面积S·AB·d.

    注意事项

    本文(椭圆问题中最值得关注的基本题型(17页).doc)为本站会员(1595****071)主动上传,淘文阁 - 分享文档赚钱的网站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知淘文阁 - 分享文档赚钱的网站(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于淘文阁 - 版权申诉 - 用户使用规则 - 积分规则 - 联系我们

    本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

    工信部备案号:黑ICP备15003705号 © 2020-2023 www.taowenge.com 淘文阁 

    收起
    展开