制动器试验台的控制方法分析__(19页).doc
-制动器试验台的控制方法分析_-第 17 页制动器试验台的控制方法分析摘要本文就制动器试验台的控制方法问题进行了相关研究。针对问题1,假设路试时前轮作无滑滚动,推出载荷在车辆平动时具有的能量计算公式,根据能量与转动惯量的物理关系,建立等效转动惯量依赖于滚动半径和载荷大小的模型(式5-1-3),求得等效转动惯量大小为。针对问题2,将飞轮看成均质的空心圆柱,推导出飞轮的转动惯量计算公式(式5-2-3),分别算出三个飞轮的转动惯量,进而得到其可组成的8种机械惯量:10,40,70,130,100,160,190,220。由电动机能补偿的能量范围及问题1得到的等效转动惯量,可得出电动机需补偿惯量的2个可能值:或。针对问题3,根据驱动电流输出力矩对机械惯量对应力矩的补偿作用,利用角加速度与力矩的物理关系,并就补偿惯量为正、负的情况分别讨论,都推导出驱动电流依赖于制动力矩的数学模型(式5-3-2)。令制动减速度为常数,由题目所给初速度和制动时间,计算得驱动电流的2个可能值:和。针对问题4,制动器吸收能量可由制动力矩和角速度的乘积对时间的积分表示。路试时,代入力矩和角加速度的物理关系,积分可直接求出,即得路试时制动器吸收能量(式5-4-3);试验台上试验时,制动器吸收的能量中由飞轮组和电动机共同提供,其中飞轮组提供能量可积分直接求出,电动机提供能量等于力矩和角速度乘积值随时间变化曲线与时间轴所围成面积,分析题目所给数据,取样时间等长且间隔很小,故可将曲边梯形面积近似用小长方形面积之和代替,即得试验时制动器吸收能量(式5-4-7)。由题目所给表格,利用EXECL求积、求和,得能量误差为,相对能量误差为,误差较小,所以该电流控制方法较好。针对问题5,根据问题3求解得到的电流和可观测量的瞬时扭矩的函数关系式,取若干时间段研究。每个时刻对应可观测的扭矩和转速,对这些离散的点研究,相当于将连续函数离散化,每一个点代表对应时刻的属性。因为时间间隔很小,根据函数关系式可以根据上一时段的离散变量观测值计算得到本时段电流的大小。根据转速的变化规律和能量守恒,列出相邻时段参量间的关系式。使得计算机可以知道下一时刻该如何响应,建立计算机控制方法模型。针对问题6,考虑到问题5中的电流均以理想值代替实际值,而没考虑可能的干扰因素和因之产生的电流变化。采用PID控制算法建立新的模型,并根据该计算机控制方法进行评价。关键词:等效惯量 制动力矩 驱动电流 离散 PID一、 问题重述1.1问题背景汽车的行车制动器联接在车轮上,它的作用是在行驶时使车辆减速或者停止。制动器的设计是车辆设计中最重要的环节之一,直接影响着人身和车辆的安全。汽车制动器是汽车制动系统的主要组成部分,使得汽车行驶时能在短距离内停车且维持行驶方向稳定性,使下坡行驶的汽车速度保持稳定,以及使已停驶的汽车保持不动,其性能的优劣直接影响到整车的安全性能。进行制动器试验,检测其装配质量,评价它的综合性能,成为改善制动器制动性能不可或缺的一部分。在道路上测试实际车辆制动器的过程称为路试,其方法为:车辆在指定路面上加速到指定的速度;断开发动机的输出,让车辆依惯性继续运动;以恒定的力踏下制动踏板,使车辆完全停止下来或车速降到某数值以下;在这一过程中,检测制动减速度等指标。假设路试时轮胎与地面的摩擦力为无穷大,因此轮胎与地面无滑动。为了检测制动器的综合性能,需要在各种不同情况下进行大量路试。但是,车辆设计阶段无法路试,只能在专门的制动器试验台上对所设计的路试进行模拟试验。模拟试验的原则是试验台上制动器的制动过程与路试车辆上制动器的制动过程尽可能一致。通常试验台仅安装、试验单轮制动器,而不是同时试验全车所有车轮的制动器。1.2制动器试验台原理制动器试验台一般由安装了飞轮组的主轴、驱动主轴旋转的电动机、底座、施加制动的辅助装置以及测量和控制系统等组成。被试验的制动器安装在主轴的一端,当制动器工作时会使主轴减速。试验台工作时,电动机拖动主轴和飞轮旋转,达到与设定的车速相当的转速(模拟实验中,可认为主轴的角速度与车轮的角速度始终一致)后电动机断电同时施加制动,当满足设定的结束条件时就称为完成一次制动。路试车辆的指定车轮在制动时承受载荷。将这个载荷在车辆平动时具有的能量等效地转化为试验台上飞轮和主轴等机构转动时具有的能量,与此能量相应的转动惯量在本题中称为等效的转动惯量,试验台上的主轴等不可拆卸机构的惯量称为基础惯量。飞轮组由若干个飞轮组成,使用时根据需要选择几个飞轮固定到主轴上,这些飞轮的惯量之和再加上基础惯量称为机械惯量。当不能精确地用机械惯量模拟试验时,让电动机在一定规律的电流控制下参与工作,补偿由于机械惯量不足而缺少的能量,从而满足模拟试验的原则。假设试验台采用的电动机的驱动电流与其产生的扭矩成正比,且试验台工作时主轴的瞬时转速与瞬时扭矩是可观测的离散量。由于制动器性能的复杂性,电动机驱动电流与时间之间的精确关系是很难得到的。工程实际中常用的计算机控制方法是:把整个制动时间离散化为许多小的时间段,比如10 ms为一段,然后根据前面时间段观测到的瞬时转速与/或瞬时扭矩,设计出本时段驱动电流的值,这个过程逐次进行,直至完成制动。评价控制方法优劣的一个重要数量指标是能量误差的大小,本题中的能量误差是指所设计的路试时的制动器与相对应的实验台上制动器在制动过程中消耗的能量之差。通常不考虑观测误差、随机误差和连续问题离散化所产生的误差。1.3问题提出1.设车辆单个前轮的滚动半径为0.286 m,制动时承受的载荷为6230 N,求等效的转动惯量。2.飞轮组由3个外直径1 m、内直径0.2 m的环形钢制飞轮组成,厚度分别为0.0392 m、0.0784 m、0.1568 m,钢材密度为7810 kg/m3,基础惯量为10 kg·m2,问可以组成哪些机械惯量?设电动机能补偿的能量相应的惯量的范围为 -30, 30 kg·m2,对于问题1中得到的等效的转动惯量,需要用电动机补偿的惯量的大小。3.建立电动机驱动电流依赖于可观测量的数学模型。在问题1和问题2的条件下,假设制动减速度为常数,初始速度为50 km/h,制动5.0秒后车速为零,计算驱动电流。4.对于与所设计的路试等效的转动惯量为48 kg·m2,机械惯量为35 kg·m2,主轴初转速为514转/分钟,末转速为257转/分钟,时间步长为10 ms的情况,用某种控制方法试验得到的数据见附表。请对该方法执行的结果进行评价。5.按照第3问导出的数学模型,给出根据前一个时间段观测到的瞬时转速与/或瞬时扭矩,设计本时间段电流值的计算机控制方法,并对该方法进行评价。6.找出第5问给出的控制方法是否有不足之处,如果有,请重新设计一个尽量完善的计算机控制方法,并作评价。二、 问题分析本文需要解决六个问题,这六个问题相互独立又不是完全分立,其中第3、5更是联系密切。问题 3是解决问题5的基础,问题6则是问题5建立的计算机控制方法模型的改进。问题1要求车轮承受的载荷在制动过程中等效的转动惯量,本题中等效的转动惯量的定义:载荷在车辆平动时具有的能量等效地转化为试验台上飞轮和主轴等机构转动时具有的能量,与此能量相应的转动惯量为等效的转动惯量。要求等效的转动惯量,需要求荷载平动时的能量和飞轮主轴等机构转动动能和转动惯量间的关系式。根据力学知识和已知条件,即可得到等效的转动惯量。问题2要求飞轮组和主轴等机构可构成的机械惯量和需要电动机补偿的惯量。试验台上的主轴等不可拆卸机构的惯量称为基础惯量,飞轮组由若干个飞轮组成,使用时根据需要选择几个飞轮固定到主轴上,这些飞轮的惯量之和再加上基础惯量称为机械惯 量。当不能精确地用机械惯量模拟试验时,让电动机在一定规律的电流控制下参与工作,补偿由于机械惯量不足而缺少的能量,从而满足模拟试验的原则。所以电动机需要补偿的惯量是等效惯量与机械惯量的差值。根据空心圆柱体的转动惯量计算公式可以分别求得每个飞轮的转动惯量,加上基础惯量求得飞轮组和主轴等机构的机械惯量。根据等效转动惯量和机械转动惯量的关系,考虑电动机可以补偿的转动惯量范围,进而求得电动机补偿的惯量。问题3要求建立电动机驱动电流依赖于可观测量的数学模型。 制动器试验台制动过程中,可观测的量有瞬时制动力矩和主轴的瞬时转速。利用物理知识中转动动能、转动惯量和转动角速度之间的关系和制动器对等效惯量的作用效果与制动器、电动机对机械惯量的作用效果相同,列出关系式可以得到驱动电流的表达式。问题4已知某种控制方法试验得到的数据,要求对该方法执行的结果进行评价。一般评价控制方法优劣的一个重要数量指标是能量误差的大小,本题中的能量误差是指所设计的路试时的制动器与相对应的试验台上制动器在制动过程中消耗的能量之差。通常不考虑观测误差、随机误差和连续问题离散化所产生的误差。因为绝对误差不能很好地反映误差程度,所以引入能量的相对对差。路试时制动器消耗的能量等于等效惯量引起的能量差;试验台上制动器消耗的能量有两部分组成,机械惯量引起的能量差和电动机补偿的能量。问题5要利用问题3导出的模型,根据前一个时间段观测到的瞬时转速与/或瞬时扭矩,设计本时间段电流值的计算机控制方法,并对该方法进行评价。首先将连续函数离散化,得到每一个时刻的等式。因为步长很短,可以将计算得到的电流值作为下一时刻的驱动电流输入值,以此类推即可得到电流控制方法。问题6要求指出问题5所给模型的不足,并给出一个尽量完善的计算机控制方法模型。计算机控制方法的评价标准是制动器的能量误差,从减小误差的思想为出发点,分析得到新的模型。三、 模型假设1. 假设车轮与地面之间是纯滚动作用,无滑动摩擦;2. 假设主轴的角速度与车轮的角速度始终保持一致;3. 不考虑因摩擦引起的能量损耗;4. 假设飞轮是均质空心圆柱体;5. 不考虑观测误差、随机误差和连续问题离散化所产生的误差。四、 符号说明五、 模型建立与求解5.1等效转动惯量的求解5.1.1问题分析路试车辆的指定车轮在制动时承受载荷,忽略车轮自身具有的转动能量,将这个载荷在车辆平动时具有的能量,等效地转化为试验台上飞轮和主轴等机构转动时具有的能量,与此能量相应的转动惯量即为等效的转动惯量。5.1.2模型建立将轮胎看做一圆柱体进行分析,如图1示。圆柱体在滚动中,如果与接触面接触的部分无相对运动,则称为纯滚动。半径为R的圆柱体作纯滚动时,其轴线的平动速度与圆柱体绕其轴线转动的角速度的关系为:G=mgOR图1 车轮简化运动图根据假设路试时轮胎与地面的摩擦力为无穷大,因此轮胎与地面无滑动,即纯滚动。荷载与轮胎中心相对静止,荷载的速度与轮胎中心的速度相同,得=。则载荷的平动动能: (5-1-1)再根据转动惯量与能量的关系式: (5-1-2)联立(5-1-1)、(5-1-2)两式得 (5-1-3)5.1.3模型求解根据已知,代入(1-1-3)式得所以,等效的转动惯量为525.2机械惯量和补偿惯量的求解5.2.1问题分析要计算飞轮组可以组成的机械惯量,首先要计算三个飞轮分别具有的转动惯量。飞轮可看作密度均匀的空心圆柱体,利用均匀圆柱体的性质计算出各飞轮的转动惯量,进而得到飞轮组的机械惯量。根据等效转动惯量、机械惯量和电动机补偿惯量的关系式和各参数的取值范围,可以求出电动机补偿的惯量大小。5.2.2模型建立将飞轮看做外径为,内径为的空心圆柱体,即半径为的圆柱体,其中间为以为半径的空心几何体,如图2示:图2 飞轮简化示意图由几何关系得飞轮体积:飞轮质量:假设未成空心前的圆柱的质量为,空心的那一块的质量为,那么按照“相减”的想法,则转动惯量: (5-2-1)由于空心部分和圆柱的密度相同(否则未成空心前的那个几何体就不能称之为圆柱了),所以有即 (5-2-2)(5-2-1)式+(5-2-2)式,得:而(-)就是圆柱环的质量,所以飞轮的转动惯量: (5-2-3)根据已知数据和计算数据将飞轮的属性列出,如表1示:表1 飞轮属性表格内径(m)外径(m)厚度(m)质量转动惯量飞轮10.10.50.0392230.7230飞轮20.10.50.0784461.4360飞轮30.10.50.1568922.861205.2.3模型求解基础惯量=,飞轮组可组合的转动惯量共八种,大小分别为0,30,60,120,90,150,180,210,则可以组成的机械惯量:=10,40,70,130,100,160,190,220等效的转动惯量=52,电动机能补偿的能量相应的惯量的范围为 -30, 30 kg·m2,则机械惯量可取的范围为22, 82 kg·m2,所以。根据公式计算得相对应的补偿惯量:5.3驱动电流的求解5.3.1问题分析由题意,可观测量为试验台工作时的瞬时转速和瞬时扭矩,本题即建立驱动电流依赖于瞬时转速与/或瞬时扭矩的模型。根据图3制动器试验台装置简图可知制动器、电动机的共同作用方式。利用制动器对等效惯量的作用效果与制动器、电动机对机械惯量的作用效果相同,利用角加速度与力矩的物理关系,并就补偿惯量为正、负的情况分别讨论,列出关系式可以得到驱动电流的表达式。根据以上思想,建立模型。图3 制动器试验台主体原理图5.3.2模型建立主轴角加速度是一个与时间有关的量(若为常量则是匀加速或匀减速运动),记作:由刚体对质心轴的转动定理可得: (5-3-1)在角加速度为和机械惯量为时,制动器产生的力矩、合力矩以及驱动电流产生的扭矩三者之间的关系为如下两种情况: 当补偿惯量为正时,电动机作用效果与制动器作用效果相反,则所以又得:由上两式可得:即:当补偿惯量为负时,电动机作用效果与制动器作用效果相同,则所以又得由上两式可得:即:综上所述,电动机驱动电流依赖于制动力矩的数学关系为: (5-3-2)5.3.3模型求解本题要求在某种特定状况下的电动机驱动电流,这是模型的特殊情况,将这种情况下的各参数的值计算出来代入模型,即可求解驱动电流。由初始速度为50 km/h,制动5.0秒后车速为零可得,平动加速度大小为:故角加速度大小:=9.72,均为常数,与t无关。又根据其它参数的值:代入,得: 当时,电动机产生的驱动力矩与制动器产生的力矩效果相反:代入数据得电流: 当时,电动机产生的驱动力矩与制器产生的力矩效果相同:代入数据得电流5.4对某种控制方法执行结果的评价5.4.1 问题分析评价控制方法优劣的一个重要数量指标是能量误差的大小,本题中的能量误差是指所设计的路试时的制动器与相应的实验台上制动器在制动过程中消耗的能量之差。不考虑观测误差、随机误差和连续问题离散化所产生的误差。本题关键就是由题目所给数据分别求出路试时制动器所消耗的能量和相应的实验台上制动器在制动过程中消耗的能量。利用matlab7.0画出瞬时扭矩和瞬时转速的变化趋势图,如图4示:图4 瞬时扭矩和瞬时转速的变化趋势图由图4可知,瞬时转速持续下降,近似线性变化;瞬时扭矩变化可分为两部分,前一段增长较快,后一段趋于的稳定值上下波动,可以理解为制动机的启动时间。从图形的定性分析来看,该控制方法符合实际,比较合理。5.4.2 模型建立设制动力矩在时间时开始作用,则制动器吸收能量可由式(5-4-1)来表示: (5-4-1)制动力矩和角加速度之间存在关系: (5-4-2)路试时,联立(5-4-1)、(5-4-2)式,可得制动器吸收的能量: (5-4-3)代入数据:得: 在相对应的实验台上制动试验时,电机的输出力矩满足与机械惯量共同作用后,能保证制动器吸收的能量相当于等效转动惯量单独作用下所吸收的能量。电动机输出力矩与电动机补偿惯量满足下式: (5-4-4)由于在制动器试验台上,通过力矩传感器,可以准确测量出制动力矩,所以可以用系统中实时测得的来推导电机输出力矩。将(5-4-2)式代入(5-4-4)式,得:因而, (5-4-5)理论上要求,而在实际实验中,会因输出电流的变化而与有一定偏差,为方便计算,这里且将式(5-4-5)中的取值。联立式(5-4-5)、(5-4-1),得实验台上制动器在制动过程中消耗能量: (5-4-6)5.4.3 模型求解分析题目所给数据,时间差均为,很小。定积分的几何意义是曲边梯形的面积,整块曲边梯形的面积可分割成若干小曲边梯形面积,由于很小,可用矩形面积近似曲边梯形面积,便将式(5-4-6)中的定积分的求解近似转化为求和。 (5-4-7)其中为时刻主轴转速。代入数据:并运用EXCEL求积和求和,得:根据题意得,误差较小,所以该电流控制方法较好。5.5基于问题3的计算机控制方法的设计和评价5.5.1问题分析由于制动器性能的复杂性,电动机驱动电流与时间之间的精确关系是很难得到的。工程实际中常用的计算机控制方法是:把整个制动时间离散化为许多小的时间段,比如10 ms为一段,然后根据前面时间段观测到的瞬时转速与/或瞬时扭矩,设计出本时段驱动电流的值,这个过程逐次进行,直至完成制动。由于路试时是以恒定的力踏下制动踏板,所以对于一个制动器其开始制动到制动力达到稳定状态其变化曲线是一定的,设为,一般前段时间递增,而后达到稳定,如图5;在模型的准备期间,应该先确定下来制动器的制动扭距随时间变化的函数,设为。图5 扭矩随时间的变化曲线5.5.2模型建立由题目叙述可知,路试时是以恒定的力踏下制动踏板,所以对于一个制动器来说,从制动刚开始到制动力达到稳定状态期间,它所对应的制动力矩随时间的变化是一定的,设为。结合实际踩刹车的过程,可知应在制动初始阶段递增,而之后随着时间的推移,逐渐趋于稳定。 当制动力矩还未达到稳定时:根据模型三得到关系式:此时,以时间步长为0.01s将模型三进行离散化处理,可得 (5-5-1)又由题中所述,通常不考虑连续问题离散化所产生的误差,所以可以认为有: (=0,1,2,3)设测得的某一取样时段的瞬时转速为,瞬时制动扭距为,利用模型三,可以计算出此时刻应该供给的电流: (5-5-2)联立(5-5-1)与(5-5-2)可得: (5-5-3)由于已经知道是关于时间t的函数,而对于某个特定的时间点是一个常数,因此可以解出这个时间点(即使取样时刻点)t,将取样时刻点(t+0.01)代入式 (5-1-3)便可求得(t+0.01s)时刻应该加入的电流的值。 (5-5-4)当制动器的扭矩刚达到稳定的值:飞轮开始做匀减速运动,即一定,达到最大稳定值。根据公式(5-5-3)可得: (5-5-5)5.5.3模型评价此模型是建立在第时刻点的瞬时转矩和瞬时角速度不能是在受到外界干扰情况下的,否则会产生误差,且无法消除,从而累积,故需建立模型六。进行改进,抗干扰能力差。5.6改进的计算机控制模型5.6.1模型分析问题5中建立的模型存在不足,分析如下。因为根据上一时段离散的时间段对应的瞬时扭矩或瞬时转速确定驱动电流,来确定该时间段的方式会使电动机反应滞后于整个机构系统,使得制动器试验台和路试情况下的制动器作用差别变大,产生较大误差。此外,该模型仅考虑了理想状态下的电流、扭矩、转速之间的关系,没有考虑制动器、电动机都需要一小段的启动时间。5.6.2PID控制模型建立在工程实际中,应用最为广泛的调节器控制规律为比例、积分、微分控制,简称PID控制,又称PID调节。PID控制器问世至今已有近70年历史,它以其结构简单、稳定性好、工作可靠、调整方便而成为工业控制的主要技术之一。当被控对象的结构和参数不能完全掌握,或得不到精确的数学模型时,控制理论的其它技术难以采用时,系统控制器的结构和参数必须依靠经验和现场调试来确定,这时应用PID控制技术最为方便。即当我们不完全了解一个系统和被控对象,或不能通过有效的测量手段来获得系统参数时,最适合用PID控制技术。PID控制,实际中也有PI和PD控制。PID控制器就是根据系统的误差,利用比例、积分、微分计算出控制量进行控制的。 在PID增量算法中,由于执行元件本身是机械或物理的积分储存单元,如果给定值发生突变时,由算法的比例部分和微分部分计算出的控制增量可能比较大,如果该值超过了执行元件所允许的最大限度,那么实际上执行的控制增量将时受到限制时的值,多余的部分将丢失,将使系统的动态过程变长,因此,需要采取一定的措施改善这种情况。 纠正这种缺陷的方法是采用积累补偿法,当超出执行机构的执行能力时,将其多余部分积累起来,而一旦可能时,再补充执行。使控制对象与补偿环节一起构成一个简单的惯性环节。PID参数整定(1) 比例系数对系统性能的影响: 比例系数加大,使系统的动作灵敏,速度加快,稳态误差减小。偏大,振荡次数加多,调节时间加长。太大时,系统会趋于不稳定。太小,又会使系统的动作缓慢。可以选负数,这主要是由执行机构、传感器以控制对象的特性决定的。如果的符号选择不当对象状态就会离控制目标的状态越来越远,如果出现这样的情况的符号就一定要取反。 (2) 积分控制对系统性能的影响: 积分作用使系统的稳定性下降,大会使系统不稳定,但能消除稳态误差,提高系统的控制精度。 (3) 微分控制对系统性能的影响: 微分作用可以改善动态特性,偏大时,超调量较大,调节时间较短。偏小时,超调量也较大,调节时间也较长。只有合适,才能使超调量较小,减短调节时间。式中:采样周期: 第k次采样时的偏差值:第k-1次采样时的偏差值: 采样序号: 第k次采样时的调节器输出由于种种因素的影响,使系统的能量增加或减少,电流补偿模型就是在下一个时间点补偿或减少上一个时间点损失或获得的能量,系统的能量又可以回到预定值。因此,这个方法的抗干扰能力强。六、 模型评价6.1必要性分析在道路上测试实际车辆制动器的过程称为路试,其方法为车辆在指定路面上加速到指定的速度;断开发动机的输出,让车辆依惯性继续运动;以恒定的力踏下制动踏板,使车辆完全停止下来或车速降到某数值以下;在这一过程中,检测制动减速度等指标。假设路试时轮胎与地面的摩擦力为无穷大,因此轮胎与地面无滑动。为了检测制动器的综合性能,需要在各种不同情况下进行大量路试。但是,车辆设计阶段无法路试,只能在专门的制动器试验台上对所设计的路试进行模拟试验。模拟试验的原则是试验台上制动器的制动过程与路试车辆上制动器的制动过程尽可能一致。通常试验台仅安装、试验单轮制动器,而不是同时试验全车所有车轮的制动器。利用制动器试验台进行模拟控制对制动器的性能研究起着重要作用,是研究制动器性质所必须的。6.2合理性分析在计算机控制下的测试过程变得更加高效、简捷、灵活,计算机对各种电量和非电量进行测量、数据处理、设备控制以及结果输出。采用计算机辅助测试(Computer Aided Test,简称CAT)具有强大的优势,如强大的数据处理功能,较高的测试精度,保证测试系统的实时性,防止人为误差,试验效率高,易于实现智能化控制等。运用计算机辅助测试技术和电子技术,对制动时获得的数据进行数据采样、分析、传输存储等。路试车辆的指定车轮在制动时承受载荷。将这个载荷在车辆平动时具有的能量等效地转化为试验台上飞轮和主轴等机构转动时具有的能量,与此能量相应的转动惯量(以下转动惯量简称为惯量)在本题中称为等效的转动惯量。试验台上的主轴等不可拆卸机构的惯量称为基础惯量。飞轮组由若干个飞轮组成,使用时根据需要选择几个飞轮固定到主轴上,这些飞轮的惯量之和再加上基础惯量称为机械惯量。七、 结束语本文给出了制动器试验台的控制方法中求解等效的转动惯量、飞轮组和主轴等机构的机械惯量计算方法,并通过能量补偿法解决机械惯量不能提供等效惯量的情况。电动机驱动电流依赖于可观测的瞬时扭矩和瞬时转速,根据能量守恒建立数学模型,并利用建立的模型对某种理想的匀减速制动过程进行求解。制动器性能复杂性,电动机驱动电流与时间之间的精确关系是很难得到的。工程实际中常用的计算机控制方法是:把整个制动时间离散化为许多小的时间段,然后根据前面时间段观测到的瞬时转速与/或瞬时扭矩,设计出本时段驱动电流的值,这个过程逐次进行,直至完成制动。这种情况下,电动机的驱动电流并不是常数,且驱动电流的变化规律直接影响该控制方法的优劣评价控制方法优劣的一个重要数量指标是能量误差的大小,本题中的能量误差是指所设计的路试时的制动器与相对应的实验台上制动器在制动过程中消耗的能量之差。电动机补偿电流的确定是制动器试验台与路试相符合的关键,本文通过工程中常用的划分小时间段设计出电流值得计算机控制方法,并进行检验。这种通过电动机补偿能量使试验台上制动器的制动过程与路试车辆上制动器的制动过程尽可能一致的方法,在研究汽车等制动器的性能方面有着重要作用。设计出合理的电流值计算机控制方法,对这种试验过程的进行至关重要。参考文献:1陈家瑞,汽车构造(第2版)M,北京:机械工业出版社,2004;2漆安慎、杜婵英,普通物理学教程力学(第二版),高等教育出版社,2007;3盛朝强、谢昭莉,基于电惯量的汽车惯性式制动试验系统的设计,重庆大学学报(自然科学版),28(1):90-92,2005;4魏义,汽车制动器总成制动性能试验台测控系统关键技术的研究 2009.9.11;5苏杰、夏国清,带有自校正的PID预测计算机控制算法研究,计算机仿真,23(12):163-165,2006。附录:附表1 题目所给数据编号扭矩(Nm)转速(rpm)时间(s)编号扭矩(Nm)转速(rpm)时间(s)140514.330235285389.32.34240513.790.01236281.25388.752.35340513.240.02237282.5388.212.36441.25513.790.03238278.75387.662.37543.75513.790.04239277.5386.572.38645513.790.05240275386.022.39747.5513.240.06241273.75386.022.4850513.240.07242275386.022.41953.75512.690.08243278.75385.482.421055512.690.09244280384.382.431157.5512.150.1245282.5382.752.441258.75512.150.11246283.75382.22.451362.5512.150.12247283.75382.22.461462.5512.690.13248285381.112.471567.5512.150.14249283.75380.022.481667.5512.150.15250285379.472.491772.5511.60.16251282.5379.472.51875511.60.17252283.75380.022.511981.25511.060.18253277.5378.922.522086.25511.60.19254277.5377.832.532191.25511.60.2255271.25376.742.542296.25510.510.21256275376.192.5523101.25510.510.22257271.25376.192.5624105510.510.23258276.25375.12.5725110511.060.24259275374.562.5826115510.510.25260281.25373.462.5927120509.420.26261282.5372.922.628127.5509.420.27262287.5372.922.6129133.75509.420.28263287.5372.372.6230143.75509.420.29264287.5372.372.6331150509.420.3265286.25371.832.6432157.5508.870.31266285371.282.6533161.25508.330.32267283.75370.732.6634168.75507.780.33268283.75370.732.6735172.5507.780.34269282.5370.192.6836181.25507.230.35270278.75369.642.6937186.25507.230.36271276.25368.552.738193.75507.230.37272275367.462.7139198.75507.230.38273276.25366.912.7240203.75506.690.39274278.75366.372.7341208.75505.60.4275280366.372.7442211.25505.050.41276282.5365.822.7543216.25504.50.42277291.25365.272.7644218.75503.960.43278292.5364.732.7745222.5503.410.44279297.5364.732.7846226.25502.870.45280290364.182.7947230502.870.46281291.25363.642.848233.75502.320.47282285362.542.8149237.5502.320.48283287.5361.452.8250238.75501.230.49284283.75360.912.8351242.5500.140.5285282.5359.812.8452242.5499.590.51286277.5359.272.8553247.5499.040.52287276.25358.722.8654246.25499.040.53288275358.722.8755245498.50.54289275358.182.8856241.25498.50.55290277.5357.632.8957245497.950.56291280357.082.958248.75497.950.57292281.25356.542.9159256.25497.410.58293282.5355.992.9260257.5497.410.59294285355.452.9361262.5496.860.6295286.25354.92.9462262.5496.310.61296287.5354.352.9563266.25495.770.62297285353.812.9664266.25495.220.63298285353.262.9765266.25494.680.6429