欢迎来到淘文阁 - 分享文档赚钱的网站! | 帮助中心 好文档才是您的得力助手!
淘文阁 - 分享文档赚钱的网站
全部分类
  • 研究报告>
  • 管理文献>
  • 标准材料>
  • 技术资料>
  • 教育专区>
  • 应用文书>
  • 生活休闲>
  • 考试试题>
  • pptx模板>
  • 工商注册>
  • 期刊短文>
  • 图片设计>
  • ImageVerifierCode 换一换

    双曲线的标准方程及其几何性质(8页).doc

    • 资源ID:37028109       资源大小:775.50KB        全文页数:8页
    • 资源格式: DOC        下载积分:15金币
    快捷下载 游客一键下载
    会员登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录   QQ登录  
    二维码
    微信扫一扫登录
    下载资源需要15金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    双曲线的标准方程及其几何性质(8页).doc

    -双曲线的标准方程及其几何性质-第 8 页双曲线的标准方程及其几何性质一、双曲线的标准方程及其几何性质.1双曲线的定义:平面内与两定点F1、F2的距离差的绝对值是常数(大于零,小于F1F2)的点的轨迹叫双曲线。两定点F1、F2是焦点,两焦点间的距离F1F2是焦距,用2c表示,常数用2表示。(1)若MF1-MF2=2时,曲线只表示焦点F2所对应的一支双曲线.(2)若MF1-MF2=-2时,曲线只表示焦点F1所对应的一支双曲线.(3)若2=2c时,动点的轨迹不再是双曲线,而是以F1、F2为端点向外的两条射线.(4)若22c时,动点的轨迹不存在.2.双曲线的标准方程:-=1(0,b0)表示焦点在x轴上的双曲线; -=1(0,b0)表示焦点在y轴上的双曲线.判定焦点在哪条坐标轴上,不像椭圆似的比较x2、y2的分母的大小,而是x2、y2的系数的符号,焦点在系数正的那条轴上.3.双曲线的简单几何性质:标准方程()()图 象关系范 围顶 点对 称 性关于轴成轴对称、关于原点成中心对称渐 近 线离 心 率焦 点等轴双曲线:x2-y22(0),它的渐近线方程为y±x,离心率e.4.直线与双曲线的位置关系,可以通过讨论直线方程与双曲线方程组成的方程组的实数解的个数来确定。(1)通常消去方程组中变量(或)得到关于变量(或)的一元二次方程,考虑该一元二次方程的判别式,则有:直线与双曲线相交于两个点;直线与双曲线相交于一个点; 直线与双曲线无交点(2)若得到关于(或)的一元二次方程,则直线与双曲线相交于一个点,此时直线平行于双曲线的一条渐近线(3)直线被双曲线截得的弦长或,其中 是直线的斜率,是直线与双曲线的两个交点,的坐标,且,可由韦达定理整体给出二、例题选讲例1、中心在原点,焦点在x轴上的双曲线的实轴与虚轴相等,一个焦点到一条渐近线的距离为,则双曲线方程为()Ax2y21 Bx2y22 Cx2y2 Dx2y2解析:由题意,设双曲线方程为1(a>0),则ca,渐近线yx,a22.双曲线方程为x2y22. 答案:B例2、根据以下条件,分别求出双曲线的标准方程 (1)过点,离心率(2)、是双曲线的左、右焦点,是双曲线上一点,双曲线离心率为且,解:(1)依题意,双曲线的实轴可能在轴上,也可能在轴上,分别讨论如下如双曲线的实轴在轴上,设为所求 由,得由点在双曲线上,得, 又,由、得,若双曲线的实轴在轴上,设为所求 同理有,解之,得(不合,舍去)双曲线的实轴只能在轴上,所求双曲线方程为 (2)设双曲线方程为,因,而,由双曲线的定义,得由余弦,得,又,得,所求双曲线的方程为三、巩固测试题1到两定点、的距离之差的绝对值等于6的点的轨迹 ( D )A椭圆B线段C双曲线D两条射线2方程表示双曲线,则的取值范围是( D ) AB C D或3 双曲线的焦距是( C )A4BC8D与有关4若,双曲线与双曲线有( D )A相同的虚轴B相同的实轴C相同的渐近线D 相同的焦点5过双曲线左焦点F1的弦AB长为6,则(F2为右焦点)的周长是( A )A28 B22C14D126双曲线1的焦点到渐近线的距离为 ()A2 B2 C. D1解析:双曲线1的焦点为(4,0)或(4,0)渐近线方程为yx或yx.由双曲线的对称性可知,任一焦点到任一渐近线的距离相等,d2.7以椭圆的焦点为顶点,椭圆的顶点为焦点的曲线的方程为( )A A B C D8过点P(4,4)且与双曲线1只有一个交点的直线有 ()A1条 B2条 C3条 D4条解析:如图所示,满足条件的直线共有3条9经过两点的双曲线的方程为 ( )CA B C D10已知双曲线的离心率为,焦点是,则双曲线方程为( )A B C D11已知P是双曲线上的一点,是双曲线的两个焦点,且 则的面积为 ( )D A B C D12双曲线的实轴长等于 ,虚轴长等于 ,顶点坐标为 , 焦点坐标为 ,渐近线方程为 ,离心率等于 13直线与双曲线相交于两点,则=_ 12 14过点且被点M平分的双曲线的弦所在直线方程为 。 1315双曲线的虚轴长是实轴长的2倍,则 。 双曲线的虚轴长是实轴长的2倍, m<0,且双曲线方程为, m=。16已知双曲线的离心率e,且与椭圆1有共同的焦点,求该双曲线的方程解:在椭圆中,焦点坐标为(±,0),c,又e,a28,b22.双曲线方程为1.17已知、是双曲线的两个焦点,点在双曲线上且满足,求的面积解:为双曲线上的一个点且、为焦点,,在中,18已知在平面直角坐标系中的一个椭圆,它的中心在原点,左焦点为,右顶点为 ,设点. (1)求该椭圆的标准方程;(2)若是椭圆上的动点,求线段中点的轨迹方程; 18.(1)由已知得椭圆的半长轴a=2,半焦距c=,则半短轴b=1. 又椭圆的焦点在x轴上, 椭圆的标准方程为(2)设线段PA的中点为M(x,y) ,点P的坐标是(x0,y0),由x=得x0=2x1y=y0=2y由,点P在椭圆上,得, 线段PA中点M的轨迹方程是.19已知椭圆C的焦点F1(,0)和F2(,0),长轴长6,设直线交 椭圆C于A、B两点,求线段AB的中点坐标。解:由已知条件得椭圆的焦点在x轴上,其中c=,a=3,从而b=1,所以其标准方程是: .联立方程组,消去y得, .设A(),B(),AB线段的中点为M()那么: ,=所以=+2=.也就是说线段AB中点坐标为(-,).20求两条渐近线为且截直线所得弦长为的双曲线方程。解:设双曲线方程为x2-4y2=.联立方程组得: ,消去y得,3x2-24x+(36+)=0设直线被双曲线截得的弦为AB,且A(),B(),那么: 那么:|AB|=解得: =4,所以,所求双曲线方程是:21中心在原点,焦点在轴上的一个椭圆与一双曲线有共同的焦点,且,椭圆的半长轴与双曲线的半实轴之差为4,离心率之比为37。(1)求这两条曲线的方程;(2)若P为这两条曲线的一个交点,求的值。21、解:(1)设椭圆的方程为,双曲线方程为,半焦距为, 由已知得:,故两条曲线分别为: 及 (2)设,由余弦定理得:由椭圆定义得: 由双曲线定义得: 得:, 得: 所以。

    注意事项

    本文(双曲线的标准方程及其几何性质(8页).doc)为本站会员(1595****071)主动上传,淘文阁 - 分享文档赚钱的网站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知淘文阁 - 分享文档赚钱的网站(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于淘文阁 - 版权申诉 - 用户使用规则 - 积分规则 - 联系我们

    本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

    工信部备案号:黑ICP备15003705号 © 2020-2023 www.taowenge.com 淘文阁 

    收起
    展开