欢迎来到淘文阁 - 分享文档赚钱的网站! | 帮助中心 好文档才是您的得力助手!
淘文阁 - 分享文档赚钱的网站
全部分类
  • 研究报告>
  • 管理文献>
  • 标准材料>
  • 技术资料>
  • 教育专区>
  • 应用文书>
  • 生活休闲>
  • 考试试题>
  • pptx模板>
  • 工商注册>
  • 期刊短文>
  • 图片设计>
  • ImageVerifierCode 换一换

    北师大版高中数学必修4全套教案(49页).doc

    • 资源ID:37028522       资源大小:1.18MB        全文页数:50页
    • 资源格式: DOC        下载积分:15金币
    快捷下载 游客一键下载
    会员登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录   QQ登录  
    二维码
    微信扫一扫登录
    下载资源需要15金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    北师大版高中数学必修4全套教案(49页).doc

    -北师大版高中数学必修4全套教案-第 50 页第二章 平面向量2.1从位移、速度、力到向量(1课时)一、教学目标:1.知识与技能(1)理解向量与数量、向量与力、速度、位移之间的区别;(2)理解向量的实际背景与基本概念,理解向量的几何表示,并体会学科之间的联系.(3)通过教师指导发现知识结论,培养学生抽象概括能力和逻辑思维能力2.过程与方法通过力与力的分析等实例,引导学生了解向量的实际背景,帮助学生理解平面向量与向量相等的含义以及向量的几何表示;最后通过讲解例题,指导学生能够发现问题和提出问题,善于独立思考,学会分析问题和创造地解决问题.3.情感态度价值观通过本节的学习,使同学们对向量的实际背景、几何表示有了一个基本的认识;激发学生学习数学的兴趣和积极性,陶冶学生的情操,培养学生坚忍不拔的意志,实事求是的科学学习态度和勇于创新的精神.二.教学重、难点 重点: 向量及向量的有关概念、表示方法.难点: 向量及向量的有关概念、表示方法.三.学法与教学用具 学法:(1)自主性学习+探究式学习法: (2)反馈练习法:以练习来检验知识的应用情况,找出未掌握的内容及其存在的差距.教学用具:电脑、投影机.四.教学设想 【创设情境】A B实例:老鼠由A向西北逃窜,猫在B处向东追去, 问:猫能否追到老鼠?(画图)结论:猫的速度再快也没用,因为方向错了.【探究新知】1学生阅读教材思考如下问题展示投影(学生先讲,教师提示或适当补充)1. 举例说明什么是向量?向量与数量有何区别?既有大小又有方向的量叫向量。例:力、速度、加速度、冲量等注意:数量与向量的区别:数量只有大小,是一个代数量,可以进行代数运算、比较大小; 向量有方向,大小,双重性,不能比较大小。 A(起点) B(终点)a从19世纪末到20世纪初,向量就成为一套优良通性的数学体系,用以研究空间性质。2.向量的表示方法有哪些?几何表示法:有向线段 有向线段:具有方向的线段叫做有向线段。记作: 注意:起点一定写在终点的前面。 有向线段的长度:线段AB的长度也叫做有向线段的长度 有向线段的三要素:起点、方向、长度字母表示法:也可用字母a、b、c(黑体字)来表示,即可表示为(印刷时用黑体字)3. 向量的模的概念是如何定义的? 向量的大小长度称为向量的模。记作:| 模是可以比较大小的4.两个特殊的向量:零向量长度(模)为0的向量,记作。的方向是任意的. 注意与0的区别 单位向量长度(模)为1个单位长度的向量叫做单位向量。思考:温度有零上零下之分,“温度”是否向量?答:不是。因为零上零下也只是大小之分。 与是否同一向量? 答:不是同一向量。 有几个单位向量?单位向量的大小是否相等?单位向量是否都相等? 答:有无数个单位向量,单位向量大小相等,单位向量不一定相等。5.向量间的关系:平行向量:方向相同或相反的非零向量叫做平行向量。abc 记作: 规定:与任一向量平行相等向量:长度相等且方向相同的向量叫做相等向量。 记作:= 规定:= 任两相等的非零向量都可用一有向线段表示,与起点无关。共线向量:任一组平行向量都可移到同一条直线上 , 所以平行向量也叫共线向量。C O B A展示投影例题讲评(学生先做,学生讲,教师提示或适当补充)DE OABCF 例题:如图,设O是正六边形ABCDEF的中心,分别写出图中与向量、相等的向量;分别写出图中与向量、共线的向量. 学习小结(学生总结,其它学生补充)向量及其表示方法.向量的模.零向量与单位向量(零向量的方向任意;单位向量不一定相等)相等向量与平行向量.五.作业:P86 习题21六. 课后反思2.2从位移的合成到向量的加法(2课时)一、教学目标:1.知识与技能(1)掌握向量加法的概念;能熟练运用三角形法则和平行四边形法则做几个向量的和向量;能准确表述向量加法的交换律和结合律,并能熟练运用它们进行向量计算.(2)了解相反向量的概念;掌握向量的减法,会作两个向量的减向量(3)通过实例,掌握向量加、减法的运算,并理解其几何意义.(4)初步体会数形结合在向量解题中的应用.2.过程与方法教材利用同学们熟悉的物理知识引出向量的加法,一方面启发我们利用位移的合成去探索两个向量的和,另一方面帮助我们利用物理背景去理解向量的加法. 然后用“相反向量”定义向量的减法;最后通过讲解例题,指导发现知识结论,培养学生抽象概括能力和逻辑思维能力.3.情感态度价值观通过本节内容的学习,使同学们对向量加法的三角形法则和平行四边形法则有了一定的认识,进一步让学生理解和领悟数形结合的思想;同时以较熟悉的物理背景去理解向量的加法,这样有助于激发学生学习数学的兴趣和积极性,实事求是的科学学习态度和勇于创新的精神.二.教学重、难点 重点: 向量加法的概念和向量加法的法则及运算律.难点: 向量的减法转化为加法的运算.三.学法与教学用具 学法:(1)自主性学习+探究式学习法: (2)反馈练习法:以练习来检验知识的应用情况,找出未掌握的内容及其存在的差距.教学用具:电脑、投影机.四.教学设想 【创设情境】提出课题:向量是否能进行运算?A B C某人从A到B,再从B按原方向到C, 则两次的位移和:+=C A B若上题改为从A到B,再从B按反方向到C,A BC 则两次的位移和:+=某车从A到B,再从B改变方向到C,A BC 则两次的位移和:+=船速为,水速为, 则两速度和:+=提出课题:向量的加法【探究新知】 1定义:求两个向量的和的运算,叫做向量的加法。 注意:两个向量的和仍旧是向量(简称和向量)aaaCCCBBBAAA 2三角形法则:a+bbabba+ba+b 强调: “向量平移”(自由向量):使前一个向量的终点为后一个向量的起点 可以推广到n个向量连加 不共线向量都可以采用这种法则三角形法则展示投影例题讲评(学生讲,学生评,教师提示或适当补充)OABaaabbb 例1、已知向量、,求作向量+ 作法:在平面内取一点, 作 则【探究新知】3加法的交换律和平行四边形法则思考:上题中+的结果与+是否相同 验证结果相同从而得到:1°向量加法的平行四边形法则 2°向量加法的交换律:+=+ABCDaca+b+cba+bb+c4向量加法的结合律:(+) +=+ (+)(可请学生先上来做,不足之处学生更正)证:如图:使, , 则(+) +=从而,多个向量的加法运算可以按照任意的次序、任意的组合来进行。展示投影例题讲评(学生讲,学生评,教师提示或适当补充)例2如图,一艘船从A点出发以的速度向垂直于对岸的方向行驶,同时水的流速为,求船实际航行的速度的大小与方向。解:设表示船垂直于对岸的速度,表示水流的速度,以AD,AB为邻边作平行四边形ABCD,则就是船实际航行的速度在中,所以因为【探究新知】思考:已知,怎样求作? 这个问题涉及到两个向量相减,到底如何运算呢?首先引入“相反向量”这个概念.5.用“相反向量”定义向量的减法“相反向量”的定义:与a长度相同、方向相反的向量;记作 -a规定:零向量的相反向量仍是零向量。-(-a) = a 任一向量与它的相反向量的和是零向量。a + (-a) = 0 如果a、b互为相反向量,则a = -b, b = -a, a + b = 0向量减法的定义:向量a加上的b相反向量,叫做a与b的差。 即:a - b = a + (-b) 求两个向量差的运算叫做向量的减法。6.用加法的逆运算定义向量的减法: 向量的减法是向量加法的逆运算: 若b + x = a,则x叫做a与b的差,记作a - b7.请同学们自己解决思考题: 的作法:方法一、已知向量、,在平面内任取一点O,作,则。即可以表示为从向量的终点指向向量的终点的向量方法二、在平面内任取一点O,作则。即也可以表示为从向量的起点指向向量的起点的向量.方法三、在平面内任取一点O,作,则由向量加法的平行四边形法则可得 . 展示投影思考与讨论:思考:从向量的终点指向向量的终点的向量是什么?()讨论:如右图,时,怎样作出呢?展示投影例题讲评(学生讲,学生评,教师提示或适当补充)例3.已知向量a、b、c、d,求作向量a-b、c-d。解:在平面上取一点O,作= a, = b, = c, = d, 作, , 则= a-b, = c-dABCbadcDO 例4.平行四边形中,=,=,用、表示向量,. A B D C解:由平行四边形法则得: = a + b, = - = a-b变式一:当a, b满足什么条件时,a+b与a-b垂直?(|a| = |b|)变式二:当a, b满足什么条件时,|a+b| = |a-b|?(a, b互相垂直)变式三:a+b与a-b可能是相当向量吗?(不可能, 对角线方向不同)例5.试用向量方法证明:对角线互相平分的四边形是平行四边形。A B D CO证:由向量加法法则: 由已知:=, = = 即AB与CD平行且相等 ABCD为平行四边形学习小结(学生总结,其它学生补充)向量加法的三角形法则与平行四边形法则.向量加法运算律.相反向量及向量减法的运算法则.五、评价设计1作业:习题2.2 A组第1、2、3、4、5、6题 2(备选题):证明:对于任意给定的向量都有证明:并说明什么时候取等号?提示:可用例5的图当、不共线时,由三角形两边之和大于第三边,而两边之差小于第三边得即六、课后反思:2.3从速度的倍数到数乘向量(2课时)一、教学目标:1.知识与技能(1)要求学生掌握实数与向量积的定义及几何意义.(2)了解数乘运算的运算律,理解向量共线的充要条件。(3)要求学生掌握平面向量的基本定理,能用两个不共线向量表示一个向量;或一个向量分解为两个向量。(4)通过练习使学生对实数与积,两个向量共线的充要条件,平面向量的基本定理有更深刻的理解,并能用来解决一些简单的几何问题。2.过程与方法:教材利用同学们熟悉的物理知识引出实数与向量的积(强调:1“模”与“方向”两点) 2三个运算定律(结合律,第一分配律,第二分配律),在此基础上得到数乘运算的几何意义;通过正交分解得到平面向量基本定理(定理的本身及其实质)。为了帮助学生消化和巩固相应的知识,教材设置了几个例题;通过讲解例题,指导发现知识结论,培养学生抽象概括能力和逻辑思维能力. 3.情感态度价值观通过本节内容的学习,使同学们对实数与向量积以及平面向量基本定理有了较深的认识,让学生理解和领悟知识将各学科有机的联系起来了,这样有助于激发学生学习数学的兴趣和积极性,有助于培养学生的发散思维和勇于创新的精神.二.教学重、难点 重点: 1. 实数与向量积的定义及几何意义.2.平面内任一向量都可以用两个不共线非零向量表示难点: 1. 实数与向量积的几何意义的理解.2. 平面向量基本定理的理解.三.学法与教学用具 学法:(1)自主性学习+探究式学习法: (2)反馈练习法:以练习来检验知识的应用情况,找出未掌握的内容及其存在的差距.教学用具:电脑、投影机.四.教学设想 【探究新知】1思考: (引入新课)已知非零向量 作出+和(-)+(-)+(-)BAOCPQMN=+=3=(-)+(-)+(-)=-3 讨论: 3与方向相同且|3|=3| -3与方向相反且|-3|=3|2从而提出课题:实数与向量的积;实数与向量的积,记作: 定义:实数与向量的积是一个向量,记作: |=|>0时与方向相同;<0时与方向相反;=0时=(请学生自己解释其几何意义)展示投影例题讲评(学生先做,学生评,教师提示或适当补充)例1.(见P96例1)略展示投影思考:根据几何意义,你能否验证下列实数与向量的积的是否满足下列运算定律(证明的过程可根据学生的实际水平决定)结合律:()=() 第一分配律:(+)=+ 第二分配律:(+)=+ 结合律证明:如果=0,=0,=至少有一个成立,则式成立如果¹0,¹0,¹有:|()|=|=|()|=| |=| |()|=|()| 如果、同号,则式两端向量的方向都与同向;如果、异号,则式两端向量的方向都与反向。 从而()=()第一分配律证明:如果=0,=0,=至少有一个成立,则式显然成立如果¹0,¹0,¹当、同号时,则和同向,|(+)|=|+|=(|+|)|+|=|+|=|+|=(|+|)|、同号 两边向量方向都与同向 即:|(+)|=|+| 当、异号,当>时 两边向量的方向都与同向当<时 两边向量的方向都与同向还可证:|(+)|=|+| 式成立第二分配律证明:如果=,=中至少有一个成立,或=0,=1则式显然成立OABB1A1当¹,¹且¹0,¹1时1°当>0且¹1时在平面内任取一点O,作= = = = 则=+ +由作法知:有ÐOAB=ÐOA1B1 |=| OABOA1B1 ÐAOB=Ð A1OB1 因此,O,B,B1在同一直线上,|=| 与方向也相同AOBB1A1(+)=+ 当<0时 可类似证明:(+)=+ 式成立【探究新知】(师生共同分析向量共线的充要条件)若有向量(¹)、,实数,使= 则由实数与向量积的定义知:与为共线向量若与共线(¹)且|:|=,则当与同向时=;当与反向时=-从而得:向量与非零向量共线的充要条件是:有且只有一个非零实数,使=.展示投影例题讲评(师生共同分析,学生动手做)PBAO例2. (见P97例2)略例3.(P97例3改编)如图:,不共线,P点在AB上,求证:存在实数使(证明过程与P97例3完全类似;略)思考:由本例你想到了什么?(用向量证明三点共线)【巩固深化,加强基础】1.见P98练习1、2、3、4题.2.如例3图,不共线,=t (tÎR)用,表示.【探究新知、展示投影】1思考:是不是每一个向量都可以分解成两个不共线向量?且分解是唯一?对于平面上两个不共线向量,是不是平面上的所有向量都可以用它们来表示?2教师引导学生分析ONBMMCM设,是不共线向量,是平面内任一向量= =1 =+=1+2= =2得平面向量基本定理:如果,是同一平面内的两个不共线向量,那么对于这一平面内的任一向量,有且只有一对实数1,2使=1+2.注意几个问题: 、必须不共线,且它是这一平面内所有向量的一组基底. 这个定理也叫共面向量定理.1,2是被,唯一确定的数量.同一平面内任一向量都可以表示为两个不共线向量的线性组合.展示投影例题讲评(教师可从中选择几个例题让学生先做,学生评讲,教师提示或适当补充;)例41kg的重物在两根细绳的支持下,处于平衡状态(如图),已知两细绳与水平线分别成30°, 60°角,问两细绳各受到多大的力?解:将重力在两根细绳方向上分解,两细绳间夹角为90°P1PP230°60°=1 (kg) ÐP1OP=60° ÐP2OP=30°=cos60°=1=0.5 (kg)=cos30°=1=0.87 (kg) 即两根细绳上承受的拉力分别为0.5 kg和0.87 kg例5.如图 ABCD的两条对角线交于点M,且=,=,用,表示,和DMABMCMab 解:在 ABCD中例6. 如图,在ABC中,=, =,AD为边BC的中线,G为ABC的重心,求向量DAEMCMabBMFMGMDABMCMab 解法1:=, = 则=+=+而= 解法2:过G作BC的平行线,交AB、AC于E、F AEFABC = 例7设,是两个不共线向量,已知=2+k, =+3, =2-, 若三点A, B, D共线,求k的值.解:=-=(2-)-(+3)=-4A, B, D共线 ,共线 存在使=即2+k=(-4) k=-8【巩固深化,发展思维】1在 ABCD中,设对角线=,=试用, 表示,2.已知 ABCD的两条对角线AC与BD交于E,O是任意一点,求证:+=4.3.见P100练习1、2题.学习小结(学生总结,其它学生补充)数乘向量的几何意义理解.向量与非零向量共线的条件是:有且只有一个非零实数,使=.平面向量基本定理的理解及注意的问题.五、评价设计1作业:习题2.3 A组第4、5、6、7题2.(备选题)如图,已知梯形ABCD中,ABCD且AB=2CD,M, N分别是DC, AB中点,设=, =,试以, 为基底表示, , ODAMMCMBMNM解:= 连ND 则DCND又=3.体会向量在平面几何中的应用六、课后反思:2.4平面向量的坐标(2课时)一、教学目标:1.知识与技能(1)掌握平面向量正交分解及其坐标表示.(2)会用坐标表示平面向量的加、减及数乘运算.(3)理解用坐标表示的平面向量共线的条件.2.过程与方法教材利用正交分解引出向量的坐标,在此基础上得到平面向量线性运算的坐标表示及向量平行的坐标表示;最后通过讲解例题,巩固知识结论,培养学生应用能力.3.情感态度价值观通过本节内容的学习,使同学们对认识到在全体有序实数对与坐标平面内的所有向量之间可以建立一一对应关系(即点或向量都可以看作有序实数对的直观形象);让学生领悟到数形结合的思想;培养学生勇于创新的精神.二.教学重、难点 重点: 平面向量线性运算的坐标表示及向量平行的坐标表示.难点: 平面向量线性运算的坐标表示及向量平行的坐标表示.三.学法与教学用具 学法:(1)自主性学习+探究式学习法: (2)反馈练习法:以练习来检验知识的应用情况,找出未掌握的内容及其存在的差距.教学用具:电脑、投影机.四.教学设想 【创设情境】(回忆)平面向量的基本定理(基底) =1+2 其实质:同一平面内任一向量都可以表示为两个不共线向量的线性组合.【探究新知】(一)、平面向量的坐标表示1在坐标系下,平面上任何一点都可用一对实数(坐标)来表示思考:在坐标系下,向量是否可以用坐标来表示呢?取轴、轴上两个单位向量, 作基底,则平面内作一向量记作:=(x, y) 称作向量的坐标 如:=(2, 2) =(2, -1) =(1, -5)=(1, 0) =(0, 1) =(0, 0)OBCAxybc由以上例子让学生讨论:向量的坐标与什么点的坐标有关?每一平面向量的坐标表示是否唯一的?两个向量相等的条件是?(两个向量坐标相等)展示投影思考与交流:直接由学生讨论回答:思考1(1)已知(x1, y1) (x2, y2) 求+,-的坐标(2)已知(x, y)和实数, 求的坐标解:+=(x1+y1)+(x2+y2)=(x1+ x2)+ (y1+y2)即:+=(x1+ x2,y1+y2)同理:-=(x1-x2, y1-y2)=(x+y)=x+y=(x, y)结论:.两个向量和与差的坐标分别等于这两个向量相应坐标的和与差.实数与向量的积的坐标,等于用这个实数乘原来的向量相应的坐标。思考2.已知你觉得的坐标与A、B点的坐标有什么关系?OxyB(x2, y2)A(x1, y1)=-=( x2, y2) - (x1,y1)= (x2- x1, y2- y1)结论:.一个向量的坐标等于表示此向量的有向线段终点的坐标减去始点的坐标。展示投影例题讲评(学生先做,学生讲,教师提示或适当补充)例1.(教材P104例2)例2. (教材P104例3)例3.已知三个力 (3, 4), (2, -5), (x, y)的合力+=求的坐标.解:由题设+= 得:(3, 4)+ (2, -5)+(x, y)=(0, 0)即: (-5,1)例4.已知平面上三点的坐标分别为A(-2, 1), B(-1, 3), C(3, 4),求点D的坐标使这四点构成平行四边形四个顶点。OxyBACD1D2D3解:当平行四边形为ABCD时,仿例2得:D1=(2, 2)当平行四边形为ACDB时,仿例2得:D2=(4, 6)当平行四边形为DACB时,仿例2得:D3=(-6, 0)【巩固深化,发展思维】1若M(3, -2) N(-5, -1) 且 , 求P点的坐标;解:设P(x, y) 则(x-3, y+2)=(-8, 1)=(-4, ) P点坐标为(-1, -)2若A(0, 1), B(1, 2), C(3, 4) 则-2=(-3,-3)3已知:四点A(5, 1), B(3, 4), C(1, 3), D(5, -3) 求证:四边形ABCD是梯形。解:=(-2, 3) =(-4, 6) =2 且 |¹| 四边形ABCD是梯形【探究新知】展示投影思考与交流:思考:共线向量的条件是有且只有一个实数使得=,那么这个条件如何用坐标来表示呢?设其中由得 消去:中至少有一个不为0结论: ()用坐标表示为注意:消去时不能两式相除 y1, y2有可能为0. 这个条件不能写成 有可能为0.向量共线的两种判定方法:() 展示投影例题讲评(学生先做,学生讲,教师提示或适当补充)例5.如果向量向量,试确定实数m的值使A、B、C三点共线解法1.利用可得于是得解法2.易得故当时,三点共线例6.若向量=(-1,x)与=(-x, 2)共线且方向相同,求x解:=(-1,x)与=(-x, 2) 共线 (-1)×2-x(-x)=0 x=± 与方向相同 x= 学习小结(学生总结,其它学生补充)【巩固深化,发展思维】1.教材P105练习1-52.已知3已知点A(0,1) B(1,0) C(1,2) D(2,1) 求证:ABCD4证明下列各组点共线: A (1,2),B(-3,4), C(2,3.5) P (-1,2), Q(0.5,0), R(5,-6)5已知向量=(-1,3) =(x,-1)且 求x . 学习小结 (学生总结,其它学生补充)向量加法运算的坐标表示.向量减法运算的坐标表示.实数与向量的积的坐标表示.向量共线的条件.五、评价设计1作业:习题2-4 A组第1,2,3,7,8题 2(备选题):已知A(-1, -1) B(1,3) C(1,5) D(2,7) 向量与平行吗?直线AB与平行于直线CD吗?解:=(1-(-1), 3-(-1)=(2, 4) =(2-1,7-5)=(1,2)又2×2-4-1=0 又=(1-(-1), 5-(-1)=(2,6) =(2, 4)2×4-2×6¹0 与不平行A,B,C不共线 AB与CD不重合 ABCD六、课后反思:2.5从力做的功到向量的数量积(2课时)一、教学目标:1.知识与技能(1)通过物理中“功”等实例,理解平面向量数量积的含义及其物理意义、几何意义.(2)体会平面向量的数量积与向量投影的关系. (3)掌握平面向量数量积的运算律和它的一些简单应用.(4)能运用数量积表示两个向量的夹角,会用数量积判断两个平面向量的垂直关系.2.过程与方法教材利用同学们熟悉的物理知识(“做功”)得到向量的数量积的含义及其物理意义、几何意义.为了帮助学生理解和巩固相应的知识,教材设置了4个例题;通过讲解例题,培养学生逻辑思维能力.3.情感态度价值观通过本节内容的学习,使同学们认识到向量的数量积与物理学的做功有着非常紧密的联系;让学生进一步领悟数形结合的思想;同时以较熟悉的物理背景去理解向量的数量积,有助于激发学生学习数学的兴趣、积极性和勇于创新的精神.二.教学重、难点 重点: 向量数量积的含义及其物理意义、几何意义;运算律.难点: 运算律的理解三.学法与教学用具学法:(1)自主性学习+探究式学习法: (2)反馈练习法:以练习来检验知识的应用情况,找出未掌握的内容及其存在的差距.教学用具:电脑、投影机.四.教学设想 【探究新知】(学生阅读教材P107108,师生共同讨论)qsF思考:请同学们回忆物理学中做功的含义,问对一般的向量a和b,如何定义这种运算?1.力做的功:W = |F|s|cosq q是F与s的夹角2.定义:平面向量数量积(内积)的定义,ab = |a|b|cosq, 并规定0与任何向量的数量积为0。×3.向量夹角的概念:范围0°q180°q = 0°q = 180°qqqqOOOOOOAAAAAABBBBBBCC展示投影由于两个向量的数量积与向量同实数积有很大区别;因此强调注意的几个问题: 两个向量的数量积是一个实数,不是向量,符号由cosq的符号所决定。 两个向量的数量积称为内积,写成ab;今后要学到两个向量的外积a×b,而ab是两个数量的积,书写时要严格区分。 在实数中,若a¹0,且ab=0,则b=0;但是在数量积中,若a¹0,且ab=0,不能推出b=0。因为其中cosq有可能为0.这就得性质2.OaAcbab 已知实数a、b、c(b¹0),则ab=bc Þ a=c.但是ab = bc Þ a = c 如右图:ab = |a|b|cosb = |b|OA| bc = |b|c|cosa = |b|OA| Þab=bc 但a ¹ c 在实数中,有(ab)c = a(bc),但是(ab)c ¹ a(bc) 显然,这是因为左端是与c共线的向量,而右端是与a共线的向量,而一般a与c不共线.展示投影思考与交流:思考与交流1.射影的概念是如何定义的,举例(或画图)说明;并指出应注意哪些问题.AOOBOB1OabqAOOBOB1OabqAOOBO(B1)Oabq 定义:|b|cosq叫做向量b在a方向上的射影。 注意:射影也是一个数量,不是向量。 当q为锐角时射影为正值; 当q为钝角时射影为负值; 当q为直角时射影为0; 当q = 0°时射影为 |b|; 当q = 180°时射影为 -|b|.思考与交流2.如何定义向量数量积的几何意义?由向量数量积的几何意义你能得到两个向量的数量积哪些的性质(学生讨论完成,教师作必要的补充). 几何意义:数量积ab等于a的长度与b在a方向上投影|b|cosq的乘积。性质:设a、b为两个非零向量,e是与b同向的单位向量。 ea = ae =|a|cosq ab Û ab = 0 当a与b同向时,ab = |a|b|;当a与b反向时,ab = -|a|b|。 特别的aa = |a|2或 cosq =(|a|b|0) |a×b|a|b|【巩固深化,发展思维】判断下列各题正确与否: 若a = 0,则对任一向量b,有ab = 0. ( ) 若a ¹ 0,则对任一非零向量b,有ab ¹ 0. ( × ) 若a ¹ 0,ab = 0,则b = 0. ( × ) 若ab = 0,则a 、b至少有一个为零. ( × ) 若a ¹ 0,ab = ac,则b = c. ( × ) 若ab = ac,则b = c当且仅当a ¹ 0时成立. ( × ) 对任意向量a、b、c,有(ab) c ¹ a (bc). ( × ) 对任意向量a,有a2 = |a|2. ( )展示投影思考与交流:思考:根据向量数量积的定义、物理意义及几何意义,你能否验证下列向量的数量积是否满足下列运算定律(证明的过程可根据学生的实际水平决定)1.交换律:ab = ba证:设a,b夹角为q,则ab = |a|b|cosq,ba = |b|a|cosq ab = ba2.数乘结合律:(a) b =(ab) = a (b)证:若= 0, 此式显然成立.若> 0, (a) b =|a|b|cosq, (ab) =|a|b|cosq, a (b) =|a|b|cosq,所以(a) b =(ab) = a (b).若< 0, (a) b =|a|b|cos(p-q) = -|a|b|(-cosq) =|a|b|cosq, (ab) =|a|b|cosq, a (b) =|a|b|cos(p-q) = -|a|b|(-cosq) =|a|b|cosq。qq1q2abABOA1B1Cc所以(a) b =(ab) = a (b).综上可知(a) b =(ab) = a (b)成立.3.分配律:(a + b) c = ac + bc 证:在平面内取一点O,作= a, = b,= c, a + b (即)在c方向上的投影 等于a、b在c方向上的投影和, 即:|a + b| cosq = |a| cosq1 + |b| cosq2 | c | |a + b| cosq =|c| |a| cosq1 + |c| |b| cosq2c (a + b) = ca + cb 即:(a + b) c = ac + bc.展示投影例题讲评(学生先做,学生讲,教师提示或适当补充)例1.已知:解:(1)(2)例2.已知都是非零向量,且垂直,垂直,求的夹角。解:由(a + 3

    注意事项

    本文(北师大版高中数学必修4全套教案(49页).doc)为本站会员(1595****071)主动上传,淘文阁 - 分享文档赚钱的网站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知淘文阁 - 分享文档赚钱的网站(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于淘文阁 - 版权申诉 - 用户使用规则 - 积分规则 - 联系我们

    本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

    工信部备案号:黑ICP备15003705号 © 2020-2023 www.taowenge.com 淘文阁 

    收起
    展开