历年典型中考反比例函数大题(附答案_详解)(23页).doc
-
资源ID:37029371
资源大小:550.50KB
全文页数:23页
- 资源格式: DOC
下载积分:15金币
快捷下载
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
历年典型中考反比例函数大题(附答案_详解)(23页).doc
-历年典型中考反比例函数大题(附答案_详解)-第 23 页一解答题(共20小题)1(2012资阳)已知:一次函数y=3x2的图象与某反比例函数的图象的一个公共点的横坐标为1(1)求该反比例函数的解析式;(2)将一次函数y=3x2的图象向上平移4个单位,求平移后的图象与反比例函数图象的交点坐标;(3)请直接写出一个同时满足如下条件的函数解析式:函数的图象能由一次函数y=3x2的图象绕点(0,2)旋转一定角度得到;函数的图象与反比例函数的图象没有公共点2(2012重庆)已知:如图,在平面直角坐标系中,一次函数y=ax+b(a0)的图象与反比例函数的图象交于一、三象限内的A、B两点,与x轴交于C点,点A的坐标为(2,m),点B的坐标为(n,2),tanBOC=(1)求该反比例函数和一次函数的解析式;(2)在x轴上有一点E(O点除外),使得BCE与BCO的面积相等,求出点E的坐标3(2012肇庆)已知反比例函数 图象的两个分支分别位于第一、第三象限(1)求k的取值范围;(2)若一次函数y=2x+k的图象与该反比例函数的图象有一个交点的纵坐标是4求当x=6时反比例函数y的值;当 时,求此时一次函数y的取值范围4(2012云南)如图,在平面直角坐标系中,O为原点,一次函数与反比例函数的图象相交于A(2,1)、B(1,2)两点,与x轴交于点C(1)分别求反比例函数和一次函数的解析式(关系式);(2)连接OA,求AOC的面积5(2012玉林)如图,在平面直角坐标系xOy中,梯形AOBC的边OB在x轴的正半轴上,ACOB,BCOB,过点A的双曲线y=的一支在第一象限交梯形对角线OC于点D,交边BC于点E(1)填空:双曲线的另一支在第_象限,k的取值范围是_;(2)若点C的左标为(2,2),当点E在什么位置时,阴影部分的面积S最小?(3)若=,SOAC=2,求双曲线的解析式6(2012义乌市)如图,矩形OABC的顶点A、C分别在x、y轴的正半轴上,点D为对角线OB的中点,点E(4,n)在边AB上,反比例函数(k0)在第一象限内的图象经过点D、E,且tanBOA=(1)求边AB的长;(2)求反比例函数的解析式和n的值;(3)若反比例函数的图象与矩形的边BC交于点F,将矩形折叠,使点O与点F重合,折痕分别与x、y轴正半轴交于点H、G,求线段OG的长7(2012烟台)如图,在平面直角坐标系中,A,B两点的纵坐标分别为7和1,直线AB与y轴所夹锐角为60°(1)求线段AB的长;(2)求经过A,B两点的反比例函数的解析式8(2012厦门)已知点A(1,c)和点B(3,d)是直线y=k1x+b与双曲线(k20)的交点(1)过点A作AMx轴,垂足为M,连接BM若AM=BM,求点B的坐标(2)若点P在线段AB上,过点P作PEx轴,垂足为E,并交双曲线(k20)于点N当取最大值时,有PN=,求此时双曲线的解析式9(2012咸宁)如图,一次函数y1=kx+b的图象与反比例函数的图象交于A(1,6),B(a,2)两点(1)求一次函数与反比例函数的解析式;(2)直接写出y1y2时x的取值范围10(2012天津)已知反比例函数y=(k为常数,k1)()其图象与正比例函数y=x的图象的一个交点为P,若点P的纵坐标是2,求k的值;()若在其图象的每一支上,y随x的增大而减小,求k的取值范围;()若其图象的一直位于第二象限,在这一支上任取两点A(x1,y1)、B(x2,y2),当y1y2时,试比较x1与x2的大小11(2012泰州)如图,已知一次函数y1=kx+b图象与x轴相交于点A,与反比例函数的图象相交于B(1,5)、C(,d)两点点P(m,n)是一次函数y1=kx+b的图象上的动点(1)求k、b的值;(2)设1m,过点P作x轴的平行线与函数的图象相交于点D试问PAD的面积是否存在最大值?若存在,请求出面积的最大值及此时点P的坐标;若不存在,请说明理由;(3)设m=1a,如果在两个实数m与n之间(不包括m和n)有且只有一个整数,求实数a的取值范围12(2012南昌)如图,等腰梯形ABCD放置在平面坐标系中,已知A(2,0)、B(6,0)、D(0,3),反比例函数的图象经过点C(1)求点C的坐标和反比例函数的解析式;(2)将等腰梯形ABCD向上平移2个单位后,问点B是否落在双曲线上?13(2012乐山)如图,直线y=2x+2与y轴交于A点,与反比例函数(x0)的图象交于点M,过M作MHx轴于点H,且tanAHO=2(1)求k的值;(2)点N(a,1)是反比例函数(x0)图象上的点,在x轴上是否存在点P,使得PM+PN最小?若存在,求出点P的坐标;若不存在,请说明理由14(2012济南)如图,已知双曲线y=经过点D(6,1),点C是双曲线第三象限上的动点,过C作CAx轴,过D作DBy轴,垂足分别为A,B连接AB,BC(1)求k的值;(2)若BCD的面积为12,求直线CD的解析式;(3)判断AB与CD的位置关系,并说明理由15(2011攀枝花)如图,已知反比例函数(m是常数,m0),一次函数y=ax+b(a、b为常数,a0),其中一次函数与x轴,y轴的交点分别是A(4,0),B(0,2)(1)求一次函数的关系式;(2)反比例函数图象上有一点P满足:PAx轴;PO=(O为坐标原点),求反比例函数的关系式;(3)求点P关于原点的对称点Q的坐标,判断点Q是否在该反比例函数的图象上16(2010义乌市)如图,一次函数y=kx+2的图象与反比例函数y=的图象交于点P,点P在第一象限PAx轴于点A,PBy轴于点B一次函数的图象分别交x轴、y轴于点C、D,且SPBD=4,=(1)求点D的坐标;(2)求一次函数与反比例函数的解析式;(3)根据图象写出当x0时,一次函数的值大于反比例函数的值的x的取值范围17(2010广州)已知反比例函数y=(m为常数)的图象经过点A(1,6)(1)求m的值;(2)如图,过点A作直线AC与函数y=的图象交于点B,与x轴交于点C,且AB=2BC,求点C的坐标18(2010北京)已知反比例函数y=的图象经过点A(,1)(1)试确定此反比例函数的解析式;(2)点O是坐标原点,将线段OA绕O点顺时针旋转30°得到线段OB判断点B是否在此反比例函数的图象上,并说明理由;(3)已知点P(m,m+6)也在此反比例函数的图象上(其中m0),过P点作x轴的垂线,交x轴于点M若线段PM上存在一点Q,使得OQM的面积是,设Q点的纵坐标为n,求n22n+9的值19(2012河北)如图,四边形ABCD是平行四边形,点A(1,0),B(3,1),C(3,3)反比例函数y=(x0)的函数图象经过点D,点P是一次函数y=kx+33k(k0)的图象与该反比例函数图象的一个公共点(1)求反比例函数的解析式;(2)通过计算,说明一次函数y=kx+33k(k0)的图象一定过点C;(3)对于一次函数y=kx+33k(k0),当y随x的增大而增大时,确定点P的横坐标的取值范围(不必写出过程)20(2012宜宾)如图,在平面直角坐标系中,已知四边形ABCD为菱形,且A(0,3)、B(4,0)(1)求经过点C的反比例函数的解析式;(2)设P是(1)中所求函数图象上一点,以P、O、A顶点的三角形的面积与COD的面积相等求点P的坐标答案与评分标准一解答题(共20小题)1(2012资阳)已知:一次函数y=3x2的图象与某反比例函数的图象的一个公共点的横坐标为1(1)求该反比例函数的解析式;(2)将一次函数y=3x2的图象向上平移4个单位,求平移后的图象与反比例函数图象的交点坐标;(3)请直接写出一个同时满足如下条件的函数解析式:函数的图象能由一次函数y=3x2的图象绕点(0,2)旋转一定角度得到;函数的图象与反比例函数的图象没有公共点考点:反比例函数与一次函数的交点问题;一次函数图象与几何变换。菁优网版权所有分析:(1)先求出两函数的交点坐标,利用待定系数法即可求得反比例函数的解析式;(2)平移后的图象对应的解析式为y=3x+2,联立两函数解析式,进而求得交点坐标;(3)常数项为2,一次项系数小于1的一次函数均可解答:解:(1)把x=1代入y=3x2,得y=1,设反比例函数的解析式为,把x=1,y=1代入得,k=1,该反比例函数的解析式为;(2)平移后的图象对应的解析式为y=3x+2,解方程组,得 或平移后的图象与反比例函数图象的交点坐标为(,3)和(1,1);(3)y=2x2(结论开放,常数项为2,一次项系数小于1的一次函数均可)点评:考查了反比例函数与一次函数的交点问题,一次函数图象与几何变换,解题的关键是待定系数法求函数解析式,掌握各函数的图象和性质2(2012重庆)已知:如图,在平面直角坐标系中,一次函数y=ax+b(a0)的图象与反比例函数的图象交于一、三象限内的A、B两点,与x轴交于C点,点A的坐标为(2,m),点B的坐标为(n,2),tanBOC=(1)求该反比例函数和一次函数的解析式;(2)在x轴上有一点E(O点除外),使得BCE与BCO的面积相等,求出点E的坐标考点:反比例函数综合题。菁优网版权所有分析:(1)过B点作BDx轴,垂足为D,由B(n,2)得BD=2,由tanBOC=,解直角三角形求OD,确定B点坐标,得出反比例函数关系式,再由A、B两点横坐标与纵坐标的积相等求n的值,由“两点法”求直线AB的解析式;(2)点E为x轴上的点,要使得BCE与BCO的面积相等,只需要CE=CO即可,根据直线AB解析式求CO,再确定E点坐标解答:解:(1)过B点作BDx轴,垂足为D,B(n,2),BD=2,在RtOBD在,tanBOC=,即=,解得OD=5,又B点在第三象限,B(5,2),将B(5,2)代入y=中,得k=xy=10,反比例函数解析式为y=,将A(2,m)代入y=中,得m=5,A(2,5),将A(2,5),B(5,2)代入y=ax+b中,得,解得,则一次函数解析式为y=x+3;(2)由y=x+3得C(3,0),即OC=3,SBCE=SBCO,CE=OC=3,OE=6,即E(6,0)点评:本题考查了反比例函数的综合运用关键是通过解直角三角形确定B点坐标,根据反比例函数图象上点的坐标特求A点坐标,求出反比例函数解析式,一次函数解析式3(2012肇庆)已知反比例函数 图象的两个分支分别位于第一、第三象限(1)求k的取值范围;(2)若一次函数y=2x+k的图象与该反比例函数的图象有一个交点的纵坐标是4求当x=6时反比例函数y的值;当 时,求此时一次函数y的取值范围考点:反比例函数与一次函数的交点问题;反比例函数的性质。菁优网版权所有专题:计算题。分析:(1)由反比例函数图象过第一、三象限,得到反比例系数k1大于0,列出关于k的不等式,求出不等式的解集得到k的范围;(2)将一次函数与反比例函数解析式联立组成方程组,由一次函数与反比例函数交点纵坐标为4,将y=4代入一次函数及反比例函数解析式,用k表示出x,两种相等得到关于k的方程,求出方程的解得到k的值,确定出反比例函数解析式,然后将x=6代入求出的反比例函数解析式中即可求出对应的函数值y的值;将求出的k值代入一次函数解析式中,确定出解析式,应y表示出x,根据x的范围列出关于y的不等式,求出不等式的解集即可得到y的取值范围解答:解:(1)反比例函数图象两支分别位于第一、三象限,k10,解得:k1;(2)联立一次函数与反比例函数解析式得:,又一次函数与反比例函数交点纵坐标为4,将y=4代入得:4x=k1,即x=,将y=4代入得:2x+k=4,即x=,=,即k1=2(4k),解得:k=3,反比例解析式为y=,当x=6时,y=;由k=3,得到一次函数解析式为y=2x+3,即x=,0x,0,解得:3y4,则一次函数y的取值范围是3y4点评:此题考查了反比例函数与一次函数的交点问题,以及反比例函数的性质反比例函数y=(k0),当k0时函数图象位于第一、三象限;当k0时,函数图象位于第二、四象限4(2012云南)如图,在平面直角坐标系中,O为原点,一次函数与反比例函数的图象相交于A(2,1)、B(1,2)两点,与x轴交于点C(1)分别求反比例函数和一次函数的解析式(关系式);(2)连接OA,求AOC的面积考点:反比例函数与一次函数的交点问题;待定系数法求一次函数解析式;待定系数法求反比例函数解析式;三角形的面积。菁优网版权所有分析:(1)设一次函数解析式为y1=kx+b(k0);反比例函数解析式为y2=(a0),将A(2,1)、B(1,2)代入y1得到方程组,求出即可;将A(2,1)代入y2得出关于a的方程,求出即可;(2)求出C的坐标,根据三角形的面积公式求出即可解答:解:(1)设一次函数解析式为y1=kx+b(k0);反比例函数解析式为y2=(a0),将A(2,1)、B(1,2)代入y1得:,y1=x1;将A(2,1)代入y2得:a=2,;答:反比例函数的解析式是y2=,一次函数的解析式是y1=x1(2)y1=x1,当y1=0时,x=1,C(1,0),OC=1,SAOC=×1×1=答:AOC的面积为点评:本题考查了对一次函数与反比例函数的交点,三角形的面积,用待定系数法求一次函数、反比例函数的解析式的应用,通过做此题培养了学生的计算能力,题目具有一定的代表性,是一道比较好的题目5(2012玉林)如图,在平面直角坐标系xOy中,梯形AOBC的边OB在x轴的正半轴上,ACOB,BCOB,过点A的双曲线y=的一支在第一象限交梯形对角线OC于点D,交边BC于点E(1)填空:双曲线的另一支在第三象限,k的取值范围是k0;(2)若点C的左标为(2,2),当点E在什么位置时,阴影部分的面积S最小?(3)若=,SOAC=2,求双曲线的解析式考点:反比例函数综合题。菁优网版权所有专题:综合题。分析:(1)根据反比例函数图象与性质得到:双曲线y=的一支在第一象限,则k0,得到另一支在第三象限;(2)根据梯形的性质,ACx轴,BCx轴,而点C的坐标为(2,2),则A点的纵坐标为2,E点的横坐标为2,B点坐标为(2,0),再分别把y=2或x=2代入y=可得到A点的坐标为(,2),E点的坐标为(2,),然后计算S阴影部分=SACE+SOBE=×(2)×(2)+×2×=k2k+2,配方得(k2)2+,当k=2时,S阴影部分最大值为,则E点的坐标为(2,1),即E点为BC的中点;(3)设D点坐标为(a,),由=,则OD=DC,即D点为OC的中点,于是C点坐标为(2a,),得到A点的纵坐标为,把y=代入y=得x=,确定A点坐标为(,),根据三角形面积公式由SOAC=2得到×(2a)×=1,然后解方程即可求出k的值解答:解:(1)三,k0;(2)梯形AOBC的边OB在x轴的正半轴上,ACOB,BCOB,而点C的坐标标为(2,2),A点的纵坐标为2,E点的横坐标为2,B点坐标为(2,0),把y=2代入y=得x=;把x=2代入y=得y=,A点的坐标为(,2),E点的坐标为(2,),S阴影部分=SACE+SOBE=×(2)×(2)+×2×=k2k+2=(k2)2+,当k2=0,即k=2时,S阴影部分最大,最大值为;E点的坐标为(2,1),即E点为BC的中点,当点E在BC的中点时,阴影部分的面积S最小;(3)设D点坐标为(a,),=,OD=DC,即D点为OC的中点,C点坐标为(2a,),A点的纵坐标为,把y=代入y=得x=,A点坐标为(,),SOAC=2,×(2a)×=1,k=点评:本题考查了反比例函数综合题:当k0时,反比例函数y=(k0)的图象分布在第一、三象限;点在反比例函数图象上,则点的横纵坐标满足图象的解析式;运用梯形的性质得到平行线段,从而找到点的坐标特点6(2012义乌市)如图,矩形OABC的顶点A、C分别在x、y轴的正半轴上,点D为对角线OB的中点,点E(4,n)在边AB上,反比例函数(k0)在第一象限内的图象经过点D、E,且tanBOA=(1)求边AB的长;(2)求反比例函数的解析式和n的值;(3)若反比例函数的图象与矩形的边BC交于点F,将矩形折叠,使点O与点F重合,折痕分别与x、y轴正半轴交于点H、G,求线段OG的长考点:反比例函数综合题。菁优网版权所有专题:综合题。分析:(1)根据点E的纵坐标判断出OA=4,再根据tanBOA=即可求出AB的长度;(2)根据(1)求出点B的坐标,再根据点D是OB的中点求出点D的坐标,然后利用待定系数法求函数解析式求出反比例函数解析式,再把点E的坐标代入进行计算即可求出n的值;(3)先利用反比例函数解析式求出点F的坐标,从而得到CF的长度,连接FG,根据折叠的性质可得FG=OG,然后用OG表示出CG的长度,再利用勾股定理列式计算即可求出OG的长度解答:解:(1)点E(4,n)在边AB上,OA=4,在RtAOB中,tanBOA=,AB=OA×tanBOA=4×=2;(2)根据(1),可得点B的坐标为(4,2),点D为OB的中点,点D(2,1)=1,解得k=2,反比例函数解析式为y=,又点E(4,n)在反比例函数图象上,=n,解得n=;(3)如图,设点F(a,2),反比例函数的图象与矩形的边BC交于点F,=2,解得a=1,CF=1,连接FG,设OG=t,则OG=FG=t,CG=2t,在RtCGF中,GF2=CF2+CG2,即t2=(2t)2+12,解得t=,OG=t=点评:本题综合考查了反比例函数的知识,包括待定系数法求函数解析式,点在函数图象上,锐角三角函数的定义,以及折叠的性质,求出点D的坐标,然后求出反比例函数解析式是解题的关键7(2012烟台)如图,在平面直角坐标系中,A,B两点的纵坐标分别为7和1,直线AB与y轴所夹锐角为60°(1)求线段AB的长;(2)求经过A,B两点的反比例函数的解析式考点:反比例函数综合题。菁优网版权所有分析:(1)过点A,B作ACx轴,BDAC,垂足分别为点C,D,根据A、B两点纵坐标求AD,解直角三角形求AB;(2)根据A点纵坐标设A(m,7),解直角三角形求BD,再表示B点坐标,将A、B两点坐标代入y=中,列方程组求k的值即可解答:解:(1)分别过点A,B作ACx轴,BDAC,垂足分别为点C,D,由题意,知BAC=60°,AD=71=6,AB=12;(2)设过A,B两点的反比例函数解析式为y=,A点坐标为(m,7),BD=ADtan60°=6,B点坐标为(m+6,1),解得k=7,所求反比例函数的解析式为y=点评:本题考查了反比例函数的综合运用关键是明确点的坐标与直角三角形的三边关系,反比例函数图象上点的坐标特点8(2012厦门)已知点A(1,c)和点B(3,d)是直线y=k1x+b与双曲线(k20)的交点(1)过点A作AMx轴,垂足为M,连接BM若AM=BM,求点B的坐标(2)若点P在线段AB上,过点P作PEx轴,垂足为E,并交双曲线(k20)于点N当取最大值时,有PN=,求此时双曲线的解析式考点:反比例函数综合题。菁优网版权所有专题:综合题。分析:(1)过B作BNx轴,由点A(1,c)和点B(3,d)都在双曲线(k20)上,得到即c=3d,则A点坐标为(1,3d),根据勾股定理计算出MB=,然后利用AM=BM得到(3d)2=22+d2,求出d的值,即可确定B点坐标;(2)由B(3,d)可得到反比例函数的解析式为y=,然后利用待定系数法求出直线AB的解析式为y=dx+4d,则可设P(t,dt+4d),则N(t,),表示出PN=dt+4d,NE=,再计算=t2+t1,配方得(t2)2+,由于取最大值,所以t=2,此时PN=dt+4d=,解方程得到d的值,即可确定双曲线的解析式解答:解:(1)如图,过B作BNx轴,点A(1,c)和点B(3,d)都在双曲线(k20)上,1×c=3×d,即c=3d,A点坐标为(1,3d),AM=3d,MN=31=2,BN=d,MB=,而AM=BM,(3d)2=22+d2,d=,B点坐标为(3,);(2)如图,把B(3,d)代入y=得k2=3d,反比例函数的解析式为y=,把A(1,3d)、B(3,d)代入y=k1x+b得,解得,直线AB的解析式为y=dx+4d,设P(t,dt+4d),则N(t,),PN=dt+4d,NE=,=t2+t1=(t2)2+,当取最大值时,t=2,此时PN=dt+4d=,2d+4d=,d=1,反比例函数的解析式为y=点评:本题考查了反比例函数综合题:点在函数图象上,则点的横纵坐标满足其解析式;运用待定系数法求函数的解析式;利用配方法讨论确定最值问题以及勾股定理计算有关线段的长度9(2012咸宁)如图,一次函数y1=kx+b的图象与反比例函数的图象交于A(1,6),B(a,2)两点(1)求一次函数与反比例函数的解析式;(2)直接写出y1y2时x的取值范围考点:反比例函数与一次函数的交点问题。菁优网版权所有专题:探究型。分析:(1)先把A(1,6)代入反比例函数的解析式求出m的值,进而可得出反比例函数的解析式,再把B(a,2)代入反比例函数的解析式即可求出a的值,把点A(1,6),B(3,2)代入函数y1=kx+b即可求出k、b的值,进而得出一次函数的解析式;(2)根据函数图象可知,当x在A、B点的横坐标之间时,一次函数的图象在反比例函数图象的上方,再由A、B两点的横坐标即可求出x的取值范围解答:解:(1)点A(1,6),B(a,2)在y2=的图象上,=6,m=6反比例函数的解析式为:y2=,=2,a=3,点A(1,6),B(3,2)在函数y1=kx+b的图象上,解这个方程组,得一次函数的解析式为y1=2x+8,反比例函数的解析式为y2=;(2)由函数图象可知,当x在A、B之间时一次函数的图象在反比例函数图象的上方,点A(1,6),B(3,2),1x3点评:本题考查的是反比例函数与一次函数的交点问题,能利用数形结合求不等式的解集是解答此题的关键10(2012天津)已知反比例函数y=(k为常数,k1)()其图象与正比例函数y=x的图象的一个交点为P,若点P的纵坐标是2,求k的值;()若在其图象的每一支上,y随x的增大而减小,求k的取值范围;()若其图象的一直位于第二象限,在这一支上任取两点A(x1,y1)、B(x2,y2),当y1y2时,试比较x1与x2的大小考点:反比例函数与一次函数的交点问题;反比例函数的性质;反比例函数图象上点的坐标特征。菁优网版权所有专题:探究型。分析:(1)设点P的坐标为(m,2),由点P在正比例函数y=x的图象上可求出m的值,进而得出P点坐标,再根据点P在反比例函数y=的图象上,所以2=,解得k=5;(2)由于在反比例函数y=图象的每一支上,y随x的增大而减小,故k10,求出k的取值范围即可;(3)反比例函数y=图象的一支位于第二象限,故在该函数图象的每一支上,y随x的增大而增大,所以A(x1,y1)与点B(x2,y2)在该函数的第二象限的图象上,且y1y2,故可知x1x2解答:解:()由题意,设点P的坐标为(m,2)点P在正比例函数y=x的图象上,2=m,即m=2点P的坐标为(2,2)点P在反比例函数y=的图象上,2=,解得k=5()在反比例函数y=图象的每一支上,y随x的增大而减小,k10,解得k1()反比例函数y=图象的一支位于第二象限,在该函数图象的每一支上,y随x的增大而增大点A(x1,y1)与点B(x2,y2)在该函数的第二象限的图象上,且y1y2,x1x2点评:本题考查的是反比例函数与一次函数的交点问题及反比例函数的性质,熟知反比例函数的增减性是解答此题的关键11(2012泰州)如图,已知一次函数y1=kx+b图象与x轴相交于点A,与反比例函数的图象相交于B(1,5)、C(,d)两点点P(m,n)是一次函数y1=kx+b的图象上的动点(1)求k、b的值;(2)设1m,过点P作x轴的平行线与函数的图象相交于点D试问PAD的面积是否存在最大值?若存在,请求出面积的最大值及此时点P的坐标;若不存在,请说明理由;(3)设m=1a,如果在两个实数m与n之间(不包括m和n)有且只有一个整数,求实数a的取值范围考点:反比例函数综合题。菁优网版权所有分析:(1)B、C两点在反比例函数图象上,根据反比例函数图象上点的横纵坐标的积相等,可求d的值,将B、C两点坐标代入y1=kx+b中,列方程组可求k、b的值;(2)存在,根据直线解析式可求A点坐标,点P在直线上,点P(,n),PDx轴,则D、P的纵坐标都是n,此时,D(,n),则PD=+,由S=nPD,可求PAD的面积表达式,利用二次函数的性质求最大值;(3)点P(m,n)在一次函数图象上,由一次函数解析式可知,设m=1a,则P(1a,2a+1),依题意mn,可知a0,根据a0和a0两种情况,分别求实数a的取值范围解答:解:(1)将B点的坐标代入y2=,得c=5,将B、C代入直线y1=kx+b得:;(2)存在令y1=0,x=,则A的坐标是:(,0);由题意,点P在线段AB上运动(不含A,B),设点P(,n),DP平行于x轴,D、P的纵坐标都是n,D的坐标是:(,n),S=nPD=(+)×n=(n)2+;而2m+3=n,得0n5;所以由S关于n的函数解析式,所对应的抛物线开口方向决定,当n=,即P(,),S的最大值是:(3)由已知P(1a,2a+1),易知,mn,1a2a+1,a0;若a0,m1n,由题m0,n2,解不等式组的解集是:0a;若a0,n1m,由题n0,m2,解得:a0;综上:a的取值范围是:a0,0a点评:本题考查了反比例函数的综合运用关键是根据反比例函数图象上点的横纵坐标积相等求C点坐标,由“两点法”求直线解析式,根据平行于x轴直线上点的坐标特点,表示三角形的面积,根据二次函数的性质求最大值,本题还考查了分类讨论的思想12(2012南昌)如图,等腰梯形ABCD放置在平面坐标系中,已知A(2,0)、B(6,0)、D(0,3),反比例函数的图象经过点C(1)求点C的坐标和反比例函数的解析式;(2)将等腰梯形ABCD向上平移2个单位后,问点B是否落在双曲线上?考点:反比例函数综合题。菁优网版权所有分析:(1)C点的纵坐标与D的纵坐标相同,过点C作CEAB于点E,则AODBEC,即可求得BE的长度,则OE的长度即可求得,即可求得C的横坐标,然后利用待定系数法即可求得反比例函数的解析式;(2)将等腰梯形ABCD向上平移2个单位后,点B向上平移2个单位长度得到的点的坐标即可得到,代入函数解析式判断即可解答:解:(1)过点C作CEAB于点E,四边形ABCD是等腰梯形,AD=BC,DO=CE,AODBEC,AO=BE=2,BO=6,DC=OE=4,C(4,3);设反比例函数的解析式y=(k0),根据题意得:3=,解得k=12;反比例函数的解析式y=;(2)将等腰梯形ABCD向上平移2个单位后得到梯形ABCD得点B(6,2),故当x=6时,y=2,即点B恰好落在双曲线上点评:本题是反比例函数与梯形的综合题,以及待定系数法求函数的解析式,利用形数结合解决此类问题,是非常有效的方法13(2012乐山)如图,直线y=2x+2与y轴交于A点,与反比例函数(x0)的图象交于点M,过M作MHx轴于点H,且tanAHO=2(1)求k的值;(2)点N(a,1)是反比例函数(x0)图象上的点,在x轴上是否存在点P,使得PM+PN最小?若存在,求出点P的坐标;若不存在,请说明理由考点:反比例函数综合题。菁优网版权所有分析:(1)根据直线解析式求A点坐标,得OA的长度;根据三角函数定义可求OH的长度,得点M的横坐标;根据点M在直线上可求点M的坐标从而可求K的值;(2)根据反比例函数解析式可求N点坐标;作点N关于x轴的对称点N1,连接MN1与x轴的交点就是满足条件的P点位置解答:解:(1)由y=2x+2可知A(0,2),即OA=2(1分)tanAHO=2,OH=1(2分)MHx轴,点M的横坐标为1点M在直线y=2x+2上,点M的纵坐标为4即M(1,4)(3分)点M在y=上,k=1×4=4(4分)(2)存在点N(a,1)在反比例函数(x0)上,a=4即点N的坐标为(4,1)(5分)过点N作N关于x轴的对称点N1,连接MN1,交x轴于P(如图所示)此时PM+PN最小(6分)N与N1关于x轴的对称,N点坐标为(4,1),N1的坐标为(4,1)(7分)设直线MN1的解析式为y=kx+b由解得k=,b=(9分)直线MN1的解析式为令y=0,得x=P点坐标为(,0)(10分)点评:此题考查一次函数的综合应用,涉及线路最短问题,难度中等14(2012济南)如图,已知双曲线y=经过点D(6,1),点C是双曲线第三象限上的动点,过C作CAx轴,过D作DBy轴,垂足分别为A,B连接AB,BC(1)求k的值;(2)若BCD的面积为12,求直线CD的解析式;(3)判断AB与CD的位置关系,并说明理由考点:反比例函数综合题。菁优网版权所有专题:综合题。分析:(1)把点D的坐标代入双曲线解析式,进行计算即可得解;(2)先根据点D的坐标求出BD的长度,再根据三角形的面积公式求出点C到BD的距离,然后求出点C的纵坐标,再代入反比例函数解析式求出点C的坐标,然后利用待定系数法求一次函数解析式解答;(3)根据题意求出点A、B的坐标,然后利用待定系数法求出直线AB的解析式,可知与直线CD的解析式k值相等,所以AB、CD平行解答:解:(1)双曲线y=经过点D(6,1),=1,解得k=6;(2)设点C到BD的距离为h,点D的坐标为(6,1),DBy轴,BD=6,SBCD=×6h=12,解得h=4,点C是双曲线第三象限上的动点,点D的纵坐标为1,点C的纵坐标为14=3,=3,解得x=2,点C的坐标为(2,3),设直线CD的解析式为y=kx+b,则,解得,所以,直线CD的解析式为y=x2;(3)ABCD理由如下:CAx轴,DBy轴,点C的坐标为(2,3),点D的坐标为(6,1),点A、B的坐标分别为A(2,0),B(0,1),设直线AB的解析式为y=mx+n,则,解得,所以,直线AB的解析式为y=x+1,AB、CD的解析式k都等于相等,AB与CD的位置关系是ABCD点评:本题是对反比例函数的综合考查,主要利用了待定系数法求函数解析式,三角形的面积的求解,待定系数法是求函数解析式最常用的方法,一定要熟练掌握并灵活运用15(2011攀枝花)如图,已知反比例函数(m是常数,m0),一次函数y=ax+b(a、b为常数,a0),其中一次函数与x轴,y轴的交点分别是A(4,0),B(0,2)(1)求一次函数的关系式;(2)反比例函数图象上有一点P满足:PAx轴;PO=(O为坐标原点),求反比例函数的关系式;(3)求点P关于原点的对称点Q的坐标,判断点Q是否在该反比例函数的图象上考点:反比例函数综合题。菁优网版权所有专题:计算题。分析:(1)用待定系数法求解函数解析式即可得出答案;(2)先求出P点的坐标,然后用待定系数法即可求出函数解析式;(3)先求出P关于原点对称的点Q的坐标,然后代入反比例函数验证即可解答:解:(1)一次函数y=ax+b与x轴,y轴的交点分别是A(4,0),B(0,2),4a+b=0,b=2,a=,一次函数的关系式为:y=x+2;(2)设P(4,n),=,解得:n=±1,由题意知n=1,n=1(舍去),把P(4,1)代入反比例函数,m=4,反比例函数的关系式为:y=;(3)P(4,1),关于原点的对称点Q的坐标为Q(4,1),把Q(4,1)代入