欢迎来到淘文阁 - 分享文档赚钱的网站! | 帮助中心 好文档才是您的得力助手!
淘文阁 - 分享文档赚钱的网站
全部分类
  • 研究报告>
  • 管理文献>
  • 标准材料>
  • 技术资料>
  • 教育专区>
  • 应用文书>
  • 生活休闲>
  • 考试试题>
  • pptx模板>
  • 工商注册>
  • 期刊短文>
  • 图片设计>
  • ImageVerifierCode 换一换

    基本不等式知识点和基本题型(5页).doc

    • 资源ID:37033644       资源大小:700.50KB        全文页数:5页
    • 资源格式: DOC        下载积分:15金币
    快捷下载 游客一键下载
    会员登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录   QQ登录  
    二维码
    微信扫一扫登录
    下载资源需要15金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    基本不等式知识点和基本题型(5页).doc

    -基本不等式知识点和基本题型-第 5 页基本不等式专题辅导一、知识点总结1、基本不等式原始形式(1)若,则 (2)若,则2、基本不等式一般形式(均值不等式) 若,则3、基本不等式的两个重要变形(1)若,则 (2)若,则总结:当两个正数的积为定植时,它们的和有最小值; 当两个正数的和为定植时,它们的积有最小值;特别说明:以上不等式中,当且仅当时取“=”4、求最值的条件:“一正,二定,三相等”5、常用结论(1)若,则 (当且仅当时取“=”)(2)若,则 (当且仅当时取“=”)(3)若,则 (当且仅当时取“=”)(4)若,则(5)若,则特别说明:以上不等式中,当且仅当时取“=”6、柯西不等式 (1)若,则(2)若,则有:(3)设是两组实数,则有二、题型分析题型一:利用基本不等式证明不等式1、设均为正数,证明不等式:2、已知为两两不相等的实数,求证:3、已知,求证:4、 已知,且,求证:已知,且,求证:6、选修45:不等式选讲设均为正数,且,证明:(); ().7、选修45:不等式选讲: 已知,求证:题型二:利用不等式求函数值域1、求下列函数的值域(1) (2) (3) (4)题型三:利用不等式求最值 (一)(凑项) 1、已知,求函数的最小值;变式1:已知,求函数的最小值;变式2:已知,求函数的最大值;练习:1、已知,求函数的最小值;2、已知,求函数的最大值;题型四:利用不等式求最值 (二)(凑系数)1、当时,求的最大值;变式1:当时,求的最大值;变式2:设,求函数的最大值。2、若,求的最大值;变式:若,求的最大值;3、求函数的最大值; (提示:平方,利用基本不等式)变式:求函数的最大值;题型五:巧用“1”的代换求最值问题1、已知,求的最小值;法一:法二:变式1:已知,求的最小值;变式2:已知,求的最小值;变式3:已知,且,求的最小值。变式4:已知,且,求的最小值;变式5:(1)若且,求的最小值;(2)若且,求的最小值;变式6:已知正项等比数列满足:,若存在两项,使得,求的最小值;题型六:分离换元法求最值(了解)1、求函数的值域; 变式:求函数的值域;2、求函数的最大值;(提示:换元法) 变式:求函数的最大值;题型七:基本不等式的综合应用1、已知,求的最小值2、(2009天津)已知,求的最小值;变式1:(2010四川)如果,求关于的表达式的最小值;变式2:(2012湖北武汉诊断)已知,当时,函数的图像恒过定点,若点在直线上,求的最小值;3、已知,求最小值;变式1:已知,满足,求范围;变式2:(2010山东)已知,求最大值;(提示:通分或三角换元)变式3:(2011浙江)已知,求最大值;4、(2013年山东(理)设正实数满足,则当取得最大值时,的最大值为( 1 )(提示:代入换元,利用基本不等式以及函数求最值)变式:设是正数,满足,求的最小值;题型八:利用基本不等式求参数范围1、(2012沈阳检测)已知,且恒成立,求正实数的最小值;2、已知且恒成立,如果,求的最大值;(参考:4)(提示:分离参数,换元法)变式:已知满则,若恒成立,求的取值范围;题型九:利用柯西不等式求最值1、二维柯西不等式 若,则2、二维形式的柯西不等式的变式3、二维形式的柯西不等式的向量形式4、三维柯西不等式若,则有:5、一般维柯西不等式设是两组实数,则有:题型分析题型一:利用柯西不等式一般形式求最值1、设,若,则的最小值为时, 析: ,最小值为此时 ,2、设,求的最小值,并求此时之值。3、设,求之最小值为 ,此时 (析:)4、(2013年湖南卷(理)已知则的最小值是 ()5、(2013年湖北卷(理)设,且满足:,求的值;6、求 的最大值与最小值。(:最大值为,最小值为 -)析:构造法:令 = (2sinq,cosq,- cosq),= (1,sinf,cosf)

    注意事项

    本文(基本不等式知识点和基本题型(5页).doc)为本站会员(1595****071)主动上传,淘文阁 - 分享文档赚钱的网站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知淘文阁 - 分享文档赚钱的网站(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于淘文阁 - 版权申诉 - 用户使用规则 - 积分规则 - 联系我们

    本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

    工信部备案号:黑ICP备15003705号 © 2020-2023 www.taowenge.com 淘文阁 

    收起
    展开