欢迎来到淘文阁 - 分享文档赚钱的网站! | 帮助中心 好文档才是您的得力助手!
淘文阁 - 分享文档赚钱的网站
全部分类
  • 研究报告>
  • 管理文献>
  • 标准材料>
  • 技术资料>
  • 教育专区>
  • 应用文书>
  • 生活休闲>
  • 考试试题>
  • pptx模板>
  • 工商注册>
  • 期刊短文>
  • 图片设计>
  • ImageVerifierCode 换一换

    三重积分.ppt

    • 资源ID:3704378       资源大小:1.96MB        全文页数:27页
    • 资源格式: PPT        下载积分:8金币
    快捷下载 游客一键下载
    会员登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录   QQ登录  
    二维码
    微信扫一扫登录
    下载资源需要8金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    三重积分.ppt

    ,第十章第三节,一、三重积分的概念,二、三重积分的计算,三重积分,第十章,一、三重积分的概念,类似二重积分解决问题的思想, 采用,引例: 设在空间有限闭区域 内分布着某种不均匀的,物质,求分布在 内的物质的,可得,“大化小, 常代变, 近似和, 求极限”,解决方法:,质量 M .,密度函数为,定义. 设,存在,称为体积元素,若对 作任意分割:,任意取点,则称此极限为函数,在 上的三重积分.,在直角坐标系下常写作,三重积分的性质与二重积分相似.,性质:,例如,下列“乘,中值定理.,在有界闭域 上连续,则存在,使得,V 为 的,体积,积和式” 极限,二、三重积分的计算,1. 利用直角坐标计算三重积分,方法1 . 投影法 (“先一后二”),方法2 . 截面法 (“先二后一”),方法3 . 三次积分法,先假设连续函数,并将它看作某物体,通过计算该物体的质量引出下列各计算,最后, 推广到一般可积函数的积分计算.,的密度函数 ,方法:,方法1. 投影法 (“先一后二” ),该物体的质量为,细长柱体微元的质量为,微元线密度,方法2. 截面法 (“先二后一”),为底, d z 为高的柱形薄片质量为,该物体的质量为,面密度,投影法,方法3. 三次积分法,设区域,利用投影法结果 ,把二重积分化成二次积分即得:,当被积函数在积分域上变号时, 因为,均为为非负函数,根据重积分性质仍可用前面介绍的方法计算.,小结: 三重积分的计算方法,方法1. “先一后二”,方法2. “先二后一”,方法3. “三次积分”,具体计算时应根据,三种方法(包含12种形式)各有特点,被积函数及积分域的特点灵活选择.,其中 为三个坐标,例1. 计算三重积分,所围成的闭区域 .,解:,面及平面,例2. 计算三重积分,解:,用“先二后一 ”,2. 利用柱坐标计算三重积分,就称为点M 的柱坐标.,直角坐标与柱面坐标的关系:,坐标面分别为,圆柱面,半平面,平面,如图所示, 在柱面坐标系中体积元素为,因此,其中,适用范围:,1) 积分域表面用柱面坐标表示时方程简单 ;,2) 被积函数用柱面坐标表示时变量互相分离.,其中 为,例3. 计算三重积分,所,解: 在柱面坐标系下,及平面,由柱面,围成半圆柱体.,例4. 计算三重积分,解: 在柱面坐标系下,所围成 .,与平面,其中 由抛物面,原式 =,3. 利用球坐标计算三重积分,就称为点M 的球坐标.,直角坐标与球面坐标的关系,坐标面分别为,如图所示, 在球面坐标系中体积元素为,因此有,其中,适用范围:,1) 积分域表面用球面坐标表示时方程简单;,2) 被积函数用球面坐标表示时变量互相分离.,例5. 计算三重积分,解: 在球面坐标系下,所围立体.,其中,与球面,例6.求曲面,所围立体体积.,解: 由曲面方程可知, 立体位于xOy面上部,利用对称性, 所求立体体积为,yOz面对称, 并与xOy面相切,故在球坐标系下所围立体为,且关于 xOz,内容小结,积分区域多由坐标面,被积函数形式简洁, 或,* 说明:,三重积分也有类似二重积分的换元积分公式:,对应雅可比行列式为,变量可分离.,围成 ;,1. 将,用三次积分表示,其中 由,所,提示:,思考与练习,六个平面,围成 ,2. 设,计算,提示: 利用对称性,原式 =,奇函数,3. 设 由锥面,和球面,所围成 , 计算,提示:,利用对称性,用球坐标,作业,P162 1(2),(3),(4); 4; 5; 7; 8; 9 (2); *10 (2) ; 11 (1), *(4),第四节,备用题 1. 计算,所围成.,其中 由,分析:若用“先二后一”, 则有,计算较繁!,采用“三次积分”较好.,所围,故可,思考: 若被积函数为 f ( y ) 时, 如何计算简便?,表为,解:,2. 计算,其中,解:,利用对称性,

    注意事项

    本文(三重积分.ppt)为本站会员(小**)主动上传,淘文阁 - 分享文档赚钱的网站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知淘文阁 - 分享文档赚钱的网站(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于淘文阁 - 版权申诉 - 用户使用规则 - 积分规则 - 联系我们

    本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

    工信部备案号:黑ICP备15003705号 © 2020-2023 www.taowenge.com 淘文阁 

    收起
    展开