高中数学选修2-3知识点(4页).doc
-高中数学选修2-3知识点-第 4 页高中数学 选修23知识点第一章 计数原理1、 分类加法计数原理:做一件事情,完成它有N类办法,在第一类办法中有M1种不同的方法,在第二类办法中有M2种不同的方法,在第N类办法中有MN种不同的方法,那么完成这件事情共有M1+M2+MN种不同的方法。 2、分步乘法计数原理:做一件事,完成它需要分成N个步骤,做第一 步有m1种不同的方法,做第二步有M2不同的方法,做第N步有MN不同的方法.那么完成这件事共有 N=M1M2.MN 种不同的方法。3、排列:从n个不同的元素中任取m(mn)个元素,按照一定顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列4、排列数:从n个不同元素中取出m(mn)个元素排成一列,称为从n个不同元素中取出m个元素的一个排列. 从n个不同元素中取出m个元素的一个排列数,用符号表示。5、公式:,6、 组合:从n个不同的元素中任取m(mn)个元素并成一组,叫做从n个不同元素中取出m个元素的一个组合。7、公式: 8、二项式定理:9、二项式通项公式10、二项式系数11、杨辉三角: (3)最值:n为偶数时,n1为奇数,中间一项的二项式系数最大且为第第二章 随机变量及其分布1、 随机变量:如果随机试验可能出现的结果可以用一个变量X来表示,并且X是随着试验的结果的不同而变化,那么这样的变量叫做随机变量 随机变量常用大写字母X、Y等或希腊字母 、等表示。2、 离散型随机变量:在上面的射击、产品检验等例子中,对于随机变量X可能取的值,我们可以按一定次序一一列出,这样的随机变量叫做离散型随机变量3、离散型随机变量的分布列:一般的,设离散型随机变量X可能取的值为x1,x2,. ,xi ,.,xn X取每一个值 xi(i=1,2,.)的概率P(=xi)Pi,则称表为离散型随机变量X 的概率分布,简称分布列4、分布列性质 pi0, i =1,2, ; p1 + p2 +pn= 15、二项分布:如果随机变量X的分布列为:其中0<p<1,q=1-p,则称离散型随机变量X服从参数p的二点分布6、超几何分布:一般地, 设总数为N件的两类物品,其中一类有M件,从所有物品中任取n(nN)件,这n件中所含这类物品件数X是一个离散型随机变量,则它取值为k时的概率为,其中,且7、 条件概率:对任意事件A和事件B,在已知事件A发生的条件下事件B发生的概率,叫做条件概率.记作P(B|A),读作A发生的条件下B的概率8、 公式:9、 相互独立事件:事件A(或B)是否发生对事件B(或A)发生的概率没有影响,这样的两个事件叫做相互独立事件。10、 n次独立重复事件:在同等条件下进行的,各次之间相互独立的一种试验11、 概率:12、二项分布: 设在n次独立重复试验中某个事件A发生的次数,A发生次数是一个随机变量如果在一次试验中某事件发生的概率是p,事件A不发生的概率为q=1-p,那么在n次独立重复试验中 (其中 k=0,1, ,n,q=1-p )于是可得随机变量的概率分布如下:这样的随机变量服从二项分布,记作B(n,p) ,其中n,p为参数13、数学期望:一般地,若离散型随机变量的概率分布为则称 Ex1p1x2p2xnpn 为的数学期望或平均数、均值,数学期望又简称为期望是离散型随机变量。14、 两点分布数学期望:E(X)=np15、 超几何分布数学期望:E(X)=.16、 方差:D()=(x1-E)2·P1+(x2-E)2·P2 +.+(xn-E)2·Pn 叫随机变量的均方差,简称方差。17、集中分布的期望与方差一览:期望方差两点分布E=pD=pq,q=1-p超几何分布D(X)=np(1-p)* (N-n)/(N-1)(不要求)二项分布, B(n,p)E=np D=qE=npq,(q=1-p)几何分布,p(=k)=g(k,p)17.正态分布:若概率密度曲线就是或近似地是函数的图像,其中解析式中的实数是参数,分别表示总体的平均数与标准差则其分布叫正态分布,f( x )的图象称为正态曲线。 18.基本性质:曲线在x轴的上方,与x轴不相交曲线关于直线x=对称,且在x=时位于最高点.当时,曲线上升;当时,曲线下降并且当曲线向左、右两边无限延伸时,以x轴为渐近线,向它无限靠近 当一定时,曲线的形状由确定越大,曲线越“矮胖”,表示总体的分布越分散;越小,曲线越“瘦高”,表示总体的分布越集中当相同时,正态分布曲线的位置由期望值来决定.正态曲线下的总面积等于1.19. 3原则:从上表看到,正态总体在 以外取值的概率 只有4.6%,在 以外取值的概率只有0.3% 由于这些概率很小,通常称这些情况发生为小概率事件.也就是说,通常认为这些情况在一次试验中几乎是不可能发生的.第三章 统计案例1、 独立性检验假设有两个分类变量X和Y,它们的值域分另为x1, x2和y1, y2,其样本频数列联表为: y1y2总计x1aba+bx2cdc+d总计a+cb+da+b+c+d若要推断的论述为H1:“X与Y有关系”,可以利用独立性检验来考察两个变量是否有关系,并且能较精确地给出这种判断的可靠程度。具体的做法是,由表中的数据算出随机变量K2的值(即K的平方) K2 = n (ad - bc) 2 / (a+b)(c+d)(a+c)(b+d),其中n=a+b+c+d为样本容量,K2的值越大,说明“X与Y有关系”成立的可能性越大。 K23.841时,X与Y无关; K2>3.841时,X与Y有95%可能性有关;K2>6.635时X与Y有99%可能性有关2、 回归分析 回归直线方程 其中,