二次根式提高培优 打印(7页).doc
-二次根式提高培优 打印-第 7 页知识点一:二次根式的概念【知识要点】 二次根式的定义:形如的式子叫二次根式,其中叫被开方数,只有当是一个非负数时,才有意义【典型例题】 【例1】下列各式1),其中是二次根式的是_(填序号)举一反三:1、下列各式中,一定是二次根式的是( )A、 B、 C、 D、2、在、中是二次根式的个数有_个【例2】若式子有意义,则x的取值范围是 来源:学*科*网Z*X*X*K举一反三:1、使代数式有意义的x的取值范围是( ) A、x>3 B、x3 C、 x>4 D 、x3且x42、使代数式有意义的x的取值范围是 3、如果代数式有意义,那么,直角坐标系中点P(m,n)的位置在()A、第一象限B、第二象限C、第三象限D、第四象限【例3】若y=+2009,则x+y= 解题思路:式子(a0), ,y=2009,则x+y=2014举一反三:1、若,则xy的值为( )A1 B1 C2 D32、若x、y都是实数,且y=,求xy的值3、当取什么值时,代数式取值最小,并求出这个最小值。已知a是整数部分,b是 的小数部分,求的值。若的整数部分是a,小数部分是b,则 。若的整数部分为x,小数部分为y,求的值.知识点二:二次根式的性质【知识要点】 1. 非负性:是一个非负数 注意:此性质可作公式记住,后面根式运算中经常用到 2. 注意:此性质既可正用,也可反用,反用的意义在于,可以把任意一个非负数或非负代数式写成完全平方的形式: 3. 注意:(1)字母不一定是正数(2)能开得尽方的因式移到根号外时,必须用它的算术平方根代替 (3)可移到根号内的因式,必须是非负因式,如果因式的值是负的,应把负号留在根号外 4. 公式与的区别与联系(1)表示求一个数的平方的算术根,a的范围是一切实数(2)表示一个数的算术平方根的平方,a的范围是非负数(3)和的运算结果都是非负的【典型例题】 【例4】若则 举一反三:1、若,则的值为 。2、已知为实数,且,则的值为( )A3B 3C1D 13、已知直角三角形两边x、y的长满足x240,则第三边长为.4、若与互为相反数,则。 (公式的运用)【例5】 化简:的结果为( )A、42a B、0 C、2a4 D、4举一反三:在实数范围内分解因式: = ;= 1、 化简:已知直角三角形的两直角边分别为和,则斜边长为 (公式的应用)【例6】已知,则化简的结果是A、 B、C、D、 举一反三:1、根式的值是( )A-3 B3或-3 C3 D92、已知a<0,那么2a可化简为( ) Aa Ba C3a D3a3、若,则等于( )A. B. C. D. 4、若a30,则化简的结果是( )(A) 1 (B) 1 (C) 2a7 (D) 72a5、化简得( )(A)2(B)(C)2(D)6、当al且a0时,化简 7、已知,化简求值:【例7】如果表示a,b两个实数的点在数轴上的位置如图所示,那么化简ab+ 的结果等于( ) A2b B2b C2a D2a举一反三:实数在数轴上的位置如图所示:化简:【例8】化简的结果是2x-5,则x的取值范围是( )(A)x为任意实数 (B)x4 (C) x1 (D)x1举一反三:若代数式的值是常数,则的取值范围是( )或【例9】如果,那么a的取值范围是( A. a=0 B. a=1 C.a=0或a=1 D. a1 举一反三:1、如果成立,那么实数a的取值范围是( )2、若,则的取值范围是( )(A) (B) (C) (D)【例10】化简二次根式的结果是(A) (B) (C) (D)1、把二次根式化简,正确的结果是( ) A. B. C. D. 2、把根号外的因式移到根号内:当0时, ; 。知识点三:最简二次根式和同类二次根式【知识要点】1、最简二次根式:(1)最简二次根式的定义:被开方数是整数,因式是整式;被开方数中不含能开得尽方的数或因式;分母中不含根号2、同类二次根式(可合并根式): 几个二次根式化成最简二次根式后,如果被开方数相同,这几个二次根式就叫做同类二次根式,即可以合并的两个根式。【典型例题】 【例11】在根式1) ,最简二次根式是( ) A1) 2) B3) 4) C1) 3) D1) 4)解题思路:掌握最简二次根式的条件。举一反三:1、中的最简二次根式是 。2、下列根式中,不是最简二次根式的是( )ABCD3、下列根式不是最简二次根式的是()A.B.C.D.4、下列各式中哪些是最简二次根式,哪些不是?为什么? (1) (2) (3) (4) (5) (6)5、把下列各式化为最简二次根式: (1) (2) (3)【例12】下列根式中能与是合并的是( )A. B. C.2 D. 举一反三:1、下列各组根式中,是可以合并的根式是( ) A、 B、 C、 D、2、在二次根式:; ; ;中,能与合并的二次根式是 。3、如果最简二次根式与能够合并为一个二次根式, 则a=_.知识点四:二次根式计算分母有理化【知识要点】 1分母有理化定义:把分母中的根号化去,叫做分母有理化。2有理化因式:两个含有二次根式的代数式相乘,如果它们的积不含有二次根式,就说这两个代数式互为有理化因式。有理化因式确定方法如下: 单项二次根式:利用来确定,如:,与等分别互为有理化因式。两项二次根式:利用平方差公式来确定。如与,分别互为有理化因式。3分母有理化的方法与步骤: 先将分子、分母化成最简二次根式; 将分子、分母都乘以分母的有理化因式,使分母中不含根式;最后结果必须化成最简二次根式或有理式。【典型例题】 【例13】 把下列各式分母有理化(1) (2) (3) (4)【例14】把下列各式分母有理化(1) (2) (3) (4)【例15】把下列各式分母有理化:(1) (2) (3)举一反三:1、已知,求下列各式的值:(1)(2)2、把下列各式分母有理化:(1) (2) (3)小结:一般常见的互为有理化因式有如下几类: 与; 与;与; 与知识点五:二次根式计算二次根式的乘除【知识要点】 1积的算术平方根的性质:积的算术平方根,等于积中各因式的算术平方根的积。 =·(a0,b0)2二次根式的乘法法则:两个因式的算术平方根的积,等于这两个因式积的算术平方根。 ·(a0,b0) 3商的算术平方根的性质:商的算术平方根等于被除式的算术平方根除以除式的算术平方根=(a0,b>0)4二次根式的除法法则:两个数的算术平方根的商,等于这两个数的商的算术平方根。=(a0,b>0)注意:乘、除法的运算法则要灵活运用,在实际运算中经常从等式的右边变形至等式的左边,同时还要考虑字母的取值范围,最后把运算结果化成最简二次根式【典型例题】 【例16】化简(1) (2) (3) (4)() (5) ×【例17】计算(1) (2) (3) (4)(5) (6) (7) (8)【例1 (1) (2) (3) (4) 【例19】计算:(1) (2) (3) (4)【例20】能使等式成立的的x的取值范围是( )A、 B、 C、 D、无解知识点六:二次根式计算二次根式的加减【知识要点】 需要先把二次根式化简,然后把被开方数相同的二次根式(即同类二次根式)的系数相加减,被开方数不变。注意:对于二次根式的加减,关键是合并同类二次根式,通常是先化成最简二次根式,再把同类二次根式合并但在化简二次根式时,二次根式的被开方数应不含分母,不含能开得尽的因数【典型例题】 【例20】计算(1); (2);(3); (4)【例21】 (1) (2)(3) (4)(5) (6)知识点七:二次根式计算二次根式的混合计算与求值【知识要点】 1、确定运算顺序;2、灵活运用运算定律; 3、正确使用乘法公式;4、大多数分母有理化要及时;5、在有些简便运算中也许可以约分,不要盲目有理化;【典型习题】 1、 2、 (2+43)3、 ·(-4)÷ 4、5、) 6、 7、 8、【例21】 1已知:,求的值2已知,求的值。3已知:,求的值4求的值5已知、是实数,且,求的值知识点八:根式比较大小【知识要点】 1、根式变形法 当时,如果,则;如果,则。2、平方法 当时,如果,则;如果,则。3、分母有理化法 通过分母有理化,利用分子的大小来比较。4、分子有理化法 通过分子有理化,利用分母的大小来比较。5、倒数法6、媒介传递法 适当选择介于两个数之间的媒介值,利用传递性进行比较。7、作差比较法在对两数比较大小时,经常运用如下性质:;8、求商比较法它运用如下性质:当a>0,b>0时,则:; 【典型例题】 【例22】 比较与的大小。(用两种方法解答)【例23】比较与的大小。【例24】比较与的大小。【例25】比较与的大小。【例26】比较与的大小二次根式典型习题集一、概念(一)二次根式下列式子,哪些是二次根式,哪些不是二次根式:、(x>0)、-、(x0,y0)(二)最简二次根式1把二次根式(y>0)化为最简二次根式结果是( ) A(y>0) B(y>0) C(y>0) D以上都不对2化简=_(x0) 3a化简二次根式号后的结果是_4. 已知0,化简二次根式的正确结果为_(三)同类二次根式1以下二次根式:;中,与是同类二次根式的是( ) A和 B和 C和 D和2在、3、-2中,与是同类二次根式的有_3若最简根式与根式是同类二次根式,求a、b的值4.若最简二次根式与是同类二次根式,求m、n的值(四) “分母有理化”与“有理化因式”1.+的有理化因式是_; x-的有理化因式是_ -的有理化因式是_2.把下列各式的分母有理化 (1); (2); (3); (4)二、二次根式有意义的条件: 1(1)当x是多少时,在实数范围内有意义?(2)当x是多少时, +在实数范围内有意义?(3)当x是多少时,+x2在实数范围内有意义?(4)当时,有意义。2. 使式子有意义的未知数x有( )个 A0 B1 C2 D无数3已知y=+5,求的值4若+有意义,则=_5. 若有意义,则的取值范围是 。6要是下列式子有意义求字母的取值范围(1)(2)(3)(4)(5) (6)三、二次根式的非负数性1若+=0,求a2004+b2004的值2已知+=0,求xy的3.若,求的值。a0a0四、 的应用1 a0时,、-,比较它们的结果,下面四个选项中正确的是( ) A=- B>>- C<<- D->=2先化简再求值:当a=9时,求a+的值,甲乙两人的解答如下: 甲的解答为:原式=a+=a+(1-a)=1;乙的解答为:原式=a+=a+(a-1)=2a-1=17两种解答中,_的解答是错误的,错误的原因是_3若1995-a+=a,求a-19952的值(提示:先由a-20000,判断1995-a的值是正数还是负数,去掉绝对值)4. 若-3x2时,试化简x-2+。5化简a的结果是( ) A B C- D-6把(a-1)中根号外的(a-1)移入根号内得( ) A B C- D-五、求值问题:1.当x=+,y=-,求x2-xy+y2的值2已知a=3+2,b=3-2,则a2b-ab2=_3.已知a=-1,求a3+2a2-a的值4已知4x2+y2-4x-6y+10=0,求(+y2)-(x2-5x)的值5已知2.236,求(-)-(+)的值(结果精确到0.01)6先化简,再求值 (6x+)-(4x+),其中x=,y=277当x=时,求+的值(结果用最简二次根式表示)8. 已知,求的值。六、其他1等式成立的条件是( ) Ax1 Bx-1 C-1x1 Dx1或x-12.已知,且x为偶数,求(1+x)的值3计算(+)(-)的值是( ) A2 B3 C4 D14.如果, 则x的取值范围是 。5.如果 , 则x的取值范围是 。6.若 ,则a的取值范围是 。7.设a=,b=,c=,则a、b、c的大小关系是 。8.若是一个整数,则整数n的最小值是 。9.已知的整数部分为a,小数部分为b,试求的值七、计算1.·(-)÷(m>0,n>0) 2.-3÷()× (a>0)3. 4. 5. 6. 7、已知,求下列各式的值:(1)(2) (3)1铁路基的横截面是梯形ABCD,如图,已知AD=BC,CD=8cm,路基的高度DE=6cm,斜坡BC的坡比为1:,求路基下底宽AB的长度2如图,扶梯AB的坡比为4;3,滑梯CD坡比为1:2,AE=6cm,BC=5cm,一男孩从扶梯A走到滑梯的顶部,然后从滑梯滑下到D,共经过多少路程?3如图,方格纸中小正方形的边长为1,是格点三角形,求:(1)的面积(2)的周长;(3)点C到AB的距离。