欢迎来到淘文阁 - 分享文档赚钱的网站! | 帮助中心 好文档才是您的得力助手!
淘文阁 - 分享文档赚钱的网站
全部分类
  • 研究报告>
  • 管理文献>
  • 标准材料>
  • 技术资料>
  • 教育专区>
  • 应用文书>
  • 生活休闲>
  • 考试试题>
  • pptx模板>
  • 工商注册>
  • 期刊短文>
  • 图片设计>
  • ImageVerifierCode 换一换

    椭圆知识点总结附例题(7页).doc

    • 资源ID:37121387       资源大小:436KB        全文页数:7页
    • 资源格式: DOC        下载积分:15金币
    快捷下载 游客一键下载
    会员登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录   QQ登录  
    二维码
    微信扫一扫登录
    下载资源需要15金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    椭圆知识点总结附例题(7页).doc

    -椭圆知识点总结附例题-第 7 页圆锥曲线与方程 椭 圆 知识点一椭圆及其标准方程1椭圆的定义:平面内与两定点F1,F2距离的和等于常数的点的轨迹叫做椭圆,即点集M=P| |PF1|+|PF2|=2a,2a|F1F2|=2c;这里两个定点F1,F2叫椭圆的焦点,两焦点间的距离叫椭圆的焦距2c。(时为线段,无轨迹)。2标准方程: 焦点在x轴上:(ab0); 焦点F(±c,0)焦点在y轴上:(ab0); 焦点F(0, ±c) 注意:在两种标准方程中,总有ab0,并且椭圆的焦点总在长轴上;两种标准方程可用一般形式表示: 或者 mx2+ny2=1 二椭圆的简单几何性质: (1)椭圆(ab0) 横坐标-axa ,纵坐标-bxb (2)椭圆(ab0) 横坐标-bxb,纵坐标-axa 椭圆关于x轴y轴都是对称的,这里,坐标轴是椭圆的对称轴,原点是椭圆的对称中心,椭圆的对称中心叫做椭圆的中心 (1)椭圆的顶点:A1(-a,0),A2(a,0),B1(0,-b),B2(0,b) (2)线段A1A2,B1B2 分别叫做椭圆的长轴长等于2a,短轴长等于2b,a和b分别叫做椭圆的长半轴长和短半轴长。 4离心率 (1)我们把椭圆的焦距与长轴长的比,即称为椭圆的离心率,记作e(), 是圆;e越接近于0 (e越小),椭圆就越接近于圆;e越接近于1 (e越大),椭圆越扁;注意:离心率的大小只与椭圆本身的形状有关,与其所处的位置无关。(2)椭圆的第二定义:平面内与一个定点(焦点)和一定直线(准线)的距离的比为常数e,(0e1)的点的轨迹为椭圆。()焦点在x轴上:(ab0)准线方程:焦点在y轴上:(ab0)准线方程:小结一:基本元素(1)基本量:a、b、c、e、(共四个量), 特征三角形(2)基本点:顶点、焦点、中心(共七个点)(3)基本线:对称轴(共两条线)5椭圆的的内外部(1)点在椭圆的内部.(2)点在椭圆的外部.6.几何性质 (1) 最大角 (2)最大距离,最小距离例题讲解:一.椭圆定义:方程化简的结果是 2若的两个顶点,的周长为,则顶点的轨迹方程是 3.已知椭圆=1上的一点P到椭圆一个焦点的距离为3,则P到另一焦点距离为 二利用标准方程确定参数+=1(1)表示圆,则实数k的取值是 .(2)表示焦点在x轴上的椭圆,则实数k的取值范围是 .(3)表示焦点在y型上的椭圆,则实数k的取值范围是 .(4)表示椭圆,则实数k的取值范围是 .的长轴长等于 ,短轴长等于 , 顶点坐标是 ,焦点的坐标是 ,焦距是 ,离心率等于 ,3椭圆的焦距为,则= 。4椭圆的一个焦点是,那么 。三待定系数法求椭圆标准方程1若椭圆经过点,则该椭圆的标准方程为 。2焦点在坐标轴上,且,的椭圆的标准方程为 3焦点在轴上,椭圆的标准方程为4. 已知三点P(5,2)、(6,0)、(6,0),求以、为焦点且过点P的椭圆的标准方程;变式:求与椭圆共焦点,且过点的椭圆方程。四焦点三角形1椭圆的焦点为、,是椭圆过焦点的弦,则的周长是 。2设,为椭圆的焦点,为椭圆上的任一点,则的周长是多少?的面积的最大值是多少?3设点是椭圆上的一点,是焦点,若是直角,则的面积为 。变式:已知椭圆,焦点为、,是椭圆上一点若,求的面积五离心率的有关问题的离心率为,则 ,则此椭圆的离心率为 3椭圆的一焦点与短轴两顶点组成一个等边三角形,则椭圆的离心率为 F1、F2,过F2作椭圆长轴的垂线交椭圆于点P,若F1PF2为等腰直角三角形,求椭圆的离心率。中,若以为焦点的椭圆经过点,则该椭圆的离心率 最值问题:1.椭圆两焦点为F1、F2,点P在椭圆上,则|PF1|·|PF2|的最大值为_,最小值为_2、椭圆两焦点为F1、F2,A(3,1)点P在椭圆上,则|PF1|+|PA|的最大值为_,最小值为 _3、已知椭圆,A(1,0),P为椭圆上任意一点,求|PA|的最大值 最小值 。4.设F是椭圆=1的右焦点,定点A(2,3)在椭圆内,在椭圆上求一点P使|PA|+2|PF|最小,求P点坐标 最小值 .同步测试 1已知F1(-8,0),F2(8,0),动点P满足|PF1|+|PF2|=16,则点P的轨迹为( )A 圆 B 椭圆 C线段 D 直线 2、椭圆左右焦点为F1、F2,CD为过F1的弦,则CDF1的周长为_ 3已知方程表示椭圆,则k的取值范围是( ) A -1<k<1 B k>0 C k0 D k>1或k<-14、求满足以下条件的椭圆的标准方程 (1)长轴长为10,短轴长为6 (2)长轴是短轴的2倍,且过点(2,1) (3) 经过点(5,1),(3,2) 5、若ABC顶点B、C坐标分别为(-4,0),(4,0),AC、AB边上的中线长之和为30,则ABC的重心G的轨迹方程为_6.椭圆的左右焦点分别是F1、F2,过点F1作x轴的垂线交椭圆于P点。若F1PF2=60°,则椭圆的离心率为_7、已知正方形ABCD,则以A、B为焦点,且过C、D两点的椭圆的的离心率为_椭圆方程为 _.8已知椭圆的方程为,P点是椭圆上的点且,求的面积 9.若椭圆的短轴为AB,它的一个焦点为F1,则满足ABF1为等边三角形的椭圆的离心率为 10.椭圆上的点P到它的左焦点的距离是12,那么点P到它的右焦点的距离是 11已知椭圆的两个焦点为、,且,弦AB过点,则的周长12.在椭圆+=1上求一点P,使它到左焦点的距离是它到右焦点的距离的两倍13、中心在原点、长轴是短轴的两倍,一条准线方程为,那么这个椭圆的方程为 。14、椭圆的两个焦点三等分它的两准线间的距离,则椭圆的离心率=_.15、椭圆的中心在原点,焦点在x轴上,准线方程为,椭圆上一点到两焦点的距离分别为10和14,则椭圆方程为 _.16.已知P是椭圆上的点,若P到椭圆右准线的距离为8.5,则P到左焦点的距离为_.17椭圆内有两点,P为椭圆上一点,若使最小,则最小值为 18、椭圆=1与椭圆=l(l>0)有 (A)相等的焦距 (B)相同的离心率 (C)相同的准线 (D)以上都不对19、椭圆与(0<k<9)的关系为 (A)相等的焦距 (B)相同的的焦点 (C)相同的准线 (D)有相等的长轴、短轴20、椭圆上一点P到左准线的距离为2,则点P到右准线的距离为 21.点为椭圆上的动点,为椭圆的左、右焦点,则的最小值为_ ,此时点的坐标为_.

    注意事项

    本文(椭圆知识点总结附例题(7页).doc)为本站会员(1595****071)主动上传,淘文阁 - 分享文档赚钱的网站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知淘文阁 - 分享文档赚钱的网站(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于淘文阁 - 版权申诉 - 用户使用规则 - 积分规则 - 联系我们

    本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

    工信部备案号:黑ICP备15003705号 © 2020-2023 www.taowenge.com 淘文阁 

    收起
    展开