企业35kv10kv变电站监控系统设计说明书毕业设计(62页).doc
-
资源ID:37122883
资源大小:787KB
全文页数:61页
- 资源格式: DOC
下载积分:15金币
快捷下载
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
企业35kv10kv变电站监控系统设计说明书毕业设计(62页).doc
-企业35kv10kv变电站监控系统设计说明书毕业设计-第 57 页企业35kv10kv变电站监控系统设计说明书摘 要 变电所计算机监控系统是采用面向对象的设计思想,并依托计算机技术、网络通信技术、现代控制技术及图形显示技术等将变电所集控制、测量及现代综合管理等功能集为一体的综合自动化系统。 与常规的监控系统相比,运行人员通过主控室的人机接口装置便可实现对整个变电所运行数据的监控与记录,并将有关信息通过远动设备向各级调度中心传送,运行可靠性大大提高,综合效益显著。本论文针现场实际存在的问题和当前变电站监控系统的发展趋势及变电所监控的特殊工艺,提出了分层监控的计算机解决方案。使用的是组态软件组态王,论文介绍了组态软件的基本特点及一些使用要求。讲述了设计监控界面的详细步骤及制作中的注意事项,对控制系统的硬件配置也进行了选择和设计。关键词:组态王; 监控系统; 变电所综合自动化ABSTRACTSubstation's computer supervision system is ecological design of object oriented and relies on computer technique, network communication technique, modern control technique, graphic display technique, which gathers control, measure and modern comprehensive manage into one comprehensive automation. Compares with the conventional supervisory system, operator can make monitoring and noting of the whole substation by human-computer interface device of main monitoring house, and transmit relative information to all levels attempering center, running dependability improves greatly and comprehensive benefit is marked. The present paper needle scene actual existence question and the current transformer substation supervisory system development tendency and the transformer substation monitoring special craft, proposed the lamination monitoring computer solution in the configuration software design monitoring contact surface manufacture detailed step and the manufacture matters needing attention, have also carried on the choice and the design to the control system hardware disposition.Key words: Configuration software ; Supervisory system; Transformer- substation synthesis automation目 录 第1章 设计说明1 1.1 设计的技术背景和设计依据1 1.2 设计任务1 1.3 变电站综合自动化系统的发展历史1第2章 电气主接线的设计3 2.1 电气主接线概述3 2.2 35KV侧主接线的设计3 2.3 10KV侧主接线的设计3 2.4 主接线方案的比较选择4 2.5 主接线中的设备配置5第3章 主变压器的选择7 3.1负荷分析7 3.2 主变压器台数的确定8 3.3 主变压器相数的确定8 3.4 主变压器容量的确定8第4章 短路电流的计算10 4.1 短路电流计算的目的及规定10 4.2 短路电流的计算结果10第5章 主要电气设备的选择15 5.1 电气设备选择概述15 5.2 高压断路器及隔离开关的选择16 5.3 母线的选择18 5.4 绝缘子和穿墙套管的选择22第6章 继电保护知识简介24 6.1 变电站继电保护的发展24 6.2 继电保护装置的基本要求24 6.3 继电保护整定24 6.4本系统故障分析25 6.5线路继电保护装置25 6.6主变继电保护装置25 6.7本设计继电保护原理概述26第 7章 主变压器继电保护整定计算27 7.1 概述27 7.2 瓦斯保护27 7.3 差动保护28 7.4 过电流保护28第8章 线路继电保护整定计算34 8.1 概述 34 8.2 线路继电保护原理35 8.3 35kv线路保护整定计算35 8.4 10kv线路保护整定计算38第9章 变电站综合自动化简介40 9.1 发展变电站综合自动化的意义40 9.2 变电站综合自动化的发展过程41第10章 变电站综合自动化的概述43 10.1 变电站综合自动化的基本原理43 10.2 变电站综合自动化系统的结构形式44第11章 变电站监控系统的总体设计原则46 11.1 变电站总体布局和监控要求46 11.2 变电站监控系统额定组态软件47第12章 变电站综合自动化系统的设计实现50 12.1 监控界面功能50 12.2 监控功能的实现52参考文献53外文翻译和译文54致谢75附录77结束语79第1章 设计说明1.1 设计的技术背景和设计依据本变电站为35kv地方变电站,35kv架空进线两回(约20km),属于两个独立电源,10kv馈出现8回。安装主变两台(2×4000KVA),有载调压。变电所10kv母线上共有8回出线,期中800KVA、500KVA和630KVA各二回,20000KVA和1600KVA各一回。预留800KVA和630KVA各一回。10kv系统采用单母分段接线方式,系统按照无穷大考虑。1.2 设计任务本设计要求最终的设计结果能实时显示变电站综合自动化系统的运行参数(包括电压、电流、功率、频率、COS等参数)和运行趋势图,故障报警显示,建立实时和历史数据库,实现SCADA功能。实现无人值守变电站综合自动化给你 。同时,要求其功率因数不低于0.95,可靠性和经济性满足变电站综合自动化要求。1.3 变电站综合自动化系统的发展历史 变电所综合自动化系统是80年代才开始应用的一个新课题。常规变电所的二次部分主要由继电保护、故障录波、就地监控和远动装置所组成。在微处理器应用之前,这些装置不仅功能不同,实现的原理和技术也不同,80年代由于微处理器的普遍应用,因而长期以来形成了不同的专业和相应的技术管理部门。这些装置都开始采用微机技术而成为微机型继电保护装置、微机监控和微机远动装置。这些微机型的装置尽管功能不同,其硬件配置都大体相同,除微机系统本身外,无非是对各种模拟量的数据采集,以及输入输出接口电路,并且装置所采集的量和要控制的对象还有许多是共同的,因而显得设备重复,互连复杂。很自然的就提出了用综合自动化来优化设计全微机化的变电所二次部分。从控制、测量、信号及遥信角度考虑,要求微机控制管理的集中性越高越好,数据事件信息的集中度、实时性越高越好,但从保护动作特性和快速维护角度来考虑,要求微机管理的独立性、物理空间单一性越明确越好,即微机出现故障时,影响面越小越好。变电所综合自动化系统的特点是:远动、保护、监控、安全自动装置和经济自动装置融为一体:控制集中、布置分散;控制方案灵活,由用户自行设计;硬件标准化;简化了变电站的运行操作。综合自动化系统对一些功能分散的过程,实行集中监视和控制。即以分散的控制适应分散的过程对象,以集中的监视、操作和管理达到掌握全局的目的。随着自动控制装置的和被控设备可靠性的提高,变电所的控制可由就地操作过渡到远方操作和自动操作。变电所综合自动化方式的特征,就是将站内当地监控功能SCANDA信号采集、远动功能以及数字保护信息结合为一个统一的整体,以全微机化的新型二次设备取代传统的机电式的二次设备,用不同模块化软件实现机电式设备的各种功能,用计算机局部网络通信来替代大量信号的连接,通过人机设备,实现变电所的综合自动化管理、监视、测量、控制及打印记录等功能。由此取消了传统的集中控制屏。 目前,变电所综合自动化技术发展迅速,已进入大面积推广应用阶段。各项新技术的发展为综合自动化系统的实现奠定了技术基础。目前,在变电站综合自动化系统中广泛使用的新技术主要有下述几个方面。1.数字信号处理(DSP)技术的应用20世纪80年代末90年代初,DSP技术的应用,使得随一次设备布置的分散式测控单元很快发展起来,而且还提供了强有力的功能综合优化手段,如电压、功率和电能的测量,可以直接从输电线路、变压器等设备上直接交流采样,通过DSP得出各相电流、电压的数字波形,经过分析计算不仅可计算出各相电流、相电压的基波和谐波有效值,以及各相有功、无功、电压主、在功电量等测量的实时数据,还能进一步计算出功率因数入、频率以及零序、负序参数等值,并和有关的输入、输出触点一起集成在变电站综合自动化系统中。2.数字通信技术和光纤技术的应用20世纪80年代以来,数字通信设备的发展应用,大大提高了通信系统的通信容量和可靠。同时,通信技术中光纤通信技术正在迅速取代金属电缆和同轴电缆,并用于远距离通信和短距离大容量信息的传输。光纤通信除具有频带宽、信道多和衰减小的特点外,还具有抗强电磁干扰的最大优点。由于光纤通信实际上几乎不受电磁干扰、浪涌、暂态分量和各端间地位差的影响,非常适用于变电站强电磁干扰的环境,是保护和监控装置最佳的通信信道。.3.计算机网络技术和现场总线技术的发展20世纪80年代以来计算机网络技术和现场总线技术得到了很大的发展,特别是局域网(LAN)技术的迅速发展和应用成为一种潮流。由于它们能很好地满足电力系统一些特殊要求,因此该项技术在变电站综合自动化中得到广泛的应用。随着计算机技术、控制技术、通信技术和显示技术的不断提高和有机结合,变电所综合自动化系统正朝着功能综合化,结构微机化,操作监视屏幕化,运行智能化的方向发展,这必将使综合自动化系统进入新的起点。从变电所综合自动化系统的发展方向来看,它的最终目标是最大限度的提高变电所的自动化水平,利用计算机来代替人的手工操作,最终实现变电所无人值班。第2章 电气主接线的设计2.1 电气主接线概述发电厂和变电所中的一次设备、按一定要求和顺序连接成的电路,称为电气主接线,也成主电路。它把各电源送来的电能汇集起来,并分给各用户。它表明各种一次设备的数量和作用,设备间的连接方式,以及与电力系统的连接情况。所以电气主接线是发电厂和变电所电气部分的主体,对发电厂和变电所以及电力系统的安全、可靠、经济运行起着重要作用,并对电气设备选择、配电装置配置、继电保护和控制方式的拟定有较大影响。2.1.1 在选择电气主接线时的设计依据(1)发电厂、变电所所在电力系统中的地位和作用(2)发电厂、变电所的分期和最终建设规模(3)负荷大小和重要性(4)系统备用容量大小(5)系统专业对电气主接线提供的具体资料2.1.2 主接线设计的基本要求(1)可靠性(2)灵活性(3)经济性2.2 35KV侧主接线的设计 35KV侧是以双回路与系统相连。 由电力工程电气一次设计手册第二章第二节中的规定可知:35110KV线路为两回以下时,宜采用桥形,线路变压器组线路分支接线。故35KV侧采用桥形的连接方式。2.3 10KV侧主接线的设计 10KV侧出线回路数为8回。 由电力工程电气设计手册第二章第二节中的规定可知:当610KV配电装置出线回路数为6回及以上时采用单母分段连接。 故10KV采用单母分段连接。2.4 主接线方案的比较选择 由以上可知,此变电站的主接线有两种方案 方案一:35KV侧采用外桥接线的连接方式,10KV侧采用单母分段连接,如图2-1所示 图2-1 35KV电气主接线方案一 方案二:35KV侧采用内桥形的连接方式,10KV侧采用单母分段连接,如图2-2所示 图2-2 35kv电气主接线方案二 此两种方案的比较 方案一 35KV侧采用单母分段的连接方式,便于变压器的正常投切和故障切除,10KV采用单母分段连线,对重要用户可从不同段引出两个回路,当一段母线发生故障,分段断路器自动将故障切除,保证正常母线供电不间断,所以此方案同时兼顾了可靠性,灵活性,经济性的要求。 方案二虽供电更可靠,调度更灵活,但与方案一相比较,设备增多,配电装置布置复杂,投资和占地面增大,而且,当母线故障或检修时,隔离开关作为操作电器使用,容易误操作。 由以上可知,在本设计中采用第一种接线,即35KV侧采用内桥形的连接方式,10KV侧采用单母分段连线。2.5 主接线中的设备配置2.5.1接地刀闸或接地器的配置 为保证电器和母线的检修安全,35KV及以上每段母线根据长度宜装设12组接地刀闸或接地器,每两接地刀闸间的距离应尽量保持适中。母线的接地刀闸宜装设在母线电压互感器的隔离开关和母联隔离开关上,也可装于其他回路母线隔离开关的基座上。必要时可设置独立式母线接地器。2.5.2电压互感器的配置(1) 电压互感器的数量和配置与主接线方式有关,并应满足测量、保护、同期和自动装置的要求。电压互感器的配置应能保证在运行方式改变时,保护 装置不得失压,同期点的两侧都能提取到电压。(2) 旁路母线上是否需要装设电压互感器,应视各回出线外侧装设电压互感器的情况和需要确定。(3) 当需要监视和检测线路侧有无电压时,出线侧的一相上应装设电压互感器。(4) 当需要在330KV及以下主变压器回路中提取电压时,可尽量利用变压器电容式套管上的电压抽取装置。(5) 发电机出口一般装设两组电压互感器,供测量、保护和自动电压调整装置需要。当发电机配有双套自动电压调整装置,且采用零序电压式匝间保护时,可再增设一组电压互感器。2.5.3电流互感器的配置(1) 凡装有断路器的回路均应装设电流互感器其数量应满足测量仪表、保护和自动装置要求。(2) 在未设断路器的下列地点也应装设电流互感器:发电机和变压器的中性点、发电机和变压器的出口、桥形接线的跨条上等。(3) 对直接接地系统,一般按三相配置。对非直接接地系统,依具体要求按两相或三相配置。(4) 一台半断路器接线中,线路线路串可装设四组电流互感器,在能满足保护和测量要求的条件下也可装设三组电流互感器。线路变压器串,当变压器的套管电流互感器可以利用时,可装设三组电流互感器。2.5.4避雷器的装置(1) 配电装置的每组母线上,应装设避雷器,但进出线装设避雷器时除外。(2) 旁路母线上是否需要装设避雷器,应视在旁路母线投入运行时,避雷器到被保护设备的电气距离是否满足要求而定。(3) 220KV及以下变压器到避雷器的电气距离超过允许值时,应在变压器附近增设一组避雷器。(4) 三绕组变压器低压侧的一相上宜设置一台避雷器。(5) 下列情况的变压器中性点应装设避雷器 直接接地系统中,变压器中性点为分级绝缘且装有隔离开关时。 直接接地系统中,变压器中性点为全绝缘,但变电所为单进线且为单台变压器运行时。 接地和经消弧线圈接地系统中,多雷区的单进线变压器中性点上。 发电厂变电所35KV及以上电缆进线段,在电缆与架空线的连接处应装设避雷器。 SF6全封闭电器的架空线路侧必须装设避雷器。 110220KV线路侧一般不装设避雷器。第3章 主变压器的选择3.1 负荷分析3.1.1 负荷分类及定义(1) 一级负荷:中断供电将造成人身伤亡或重大设计损坏,且难以挽回,带来极大的政治、经济损失者属于一级负荷。一级负荷要求有两个独立电源供电。(2) 二级负荷:中断供电将造成设计局部破坏或生产流程紊乱,且较长时间才能修复或大量产品报废,重要产品大量减产,属于二级负荷。二级负荷应由两回线供电。但当两回线路有困难时(如边远地区),允许有一回专用架空线路供电。(3) 三级负荷:不属于一级和二级的一般电力负荷。三级负荷对供电无特殊要求,允许较长时间停电,可用单回线路供电。3.1.2 负荷计算的内容和目的 1) 计算负荷又称需要负荷或最大负荷。计算负荷是一个假想的持续性的负荷,其热效应与同一时间内实际变动负荷所产生的最大热效应相等。在配电设计中,通常采用30分钟的最大平均负荷作为按发热条件选择电器或导体的依据。 2) 尖峰电流指单台或多台用电设备持续1秒左右的最大负荷电流。一般取启动电流上午周期分量作为计算电压损失、电压波动和电压下降以及选择电器和保护元件等的依据。在校验瞬动元件时,还应考虑启动电流的非周期分量。3) 平均负荷为一段时间内用电设备所消耗的电能与该段时间之比。常选用最大负荷班(即有代表性的一昼夜内电能消耗量最多的一个班)的平均负荷,有时也计算年平均负荷。平均负荷用来计算最大负荷和电能消耗量。3.1.3 负荷计算的方法负荷计算的方法有需要系数法、利用系数法及二项式法等几种。需要系数法公式简单,计算方便,适用于各类变、配电所和供配电干线以及长期运行而且负载平稳的用点设备和生产车间(如锅炉引风机、水源泵站、集中空压站)的负荷计算。但不适合用电设备台数少,各台间容量悬殊且工作制度不同时的电力负荷计算。二项式法将负荷分为基本部分和附加部分,后者系考虑一定数量大容量设备的影响。适用于机修类用电设备的计算,其他各类车间和车间变电所设计亦常采用。二项式法所得计算结果一般偏大。利用系数法以概率论为基础,根据设备利用率并考虑设备台数以及各台间功率差异的影响确定计算负荷与平均负荷间的偏差量(这反映在最大系数中大于1的部分),从而求得最大负荷。这种计算方法更具客观性和普遍性,适用于各种类型负荷的计算,所求得的结果更接近实际。但由于国内对利用系数缺乏切实的工作和数据的积累,计算方法本身也较上述两种方法复杂,故尚未得到广泛采用。在本次设计中采用需要系数法确定 最大综合计算负荷的计算可按照公式: (3-1)求得。式中 同时系数,出线回数较少时,可取0.90.95,出线回数较多时,取0.850.9; 线损,取5% =0.85××2+×(1+5%) =7377.34KVA (3-2)3.2 主变压器台数的确定 对企业用电的一次变电所,在低压侧已构成环网的情况下,变电所以装设两台主变压器为宜。此设计中的变电站符合此情况,因此选择两台变压器即可满足负荷的要求。3.3 主变压器相数的确定(1) 主变压器采用三相或是单相,主要考虑变压器的制造条件、可靠性要求及运输条件等因素。(2) 当不受运输条件限制时,在330KV及以下的发电厂和变电所,均应采用三相变压器。社会日新月异,在今天科技已十分进步,变压器的制造、运输等等已不成问题,故有以上规程可知,此变电所的主变应采用三相变压器。3.4 主变压器容量的确定 装有两台及以上主变压器的变电所中,当其中一台主变压器停运时,其余主变压器的容量一般应满足60%的全部最大综合计算负荷。即(n-1) (3-4) 由上可知,此变电站单台主变压器的容量为:×60%=7377.34×60%=4426.4 KVA (3-5) 所以应选容量为4000KVA的主变压器,综合以上分析计算,选择变压器型号为S9-4000/35型,其参数如表3-1所示。外形尺寸:2890×2305×298油重、器身、总重:2050、4687、8850空载损耗4600电源相数:三相负载损耗:28500阻抗电流:7.0冷却形式:液/油浸式负载电流:0.7/0容量:4000KVA联接组别:Yd11额定功率:4000(KVA) 冷却方式:油浸自冷式型号:S9-4000/35绕组形式:双绕组表3-1 变压器S9-4000/35参数表第4章 短路电流的计算4.1 短路电流计算的目的及规定4.1.1 短路电流计算的目的 在变电所的电气设计中,短路电流计算是其中的一个重要环节。在选择电气设备时,为保证在正常运行和故障情况下都能安全、可靠地工作,需要进行全面的短路电流计算。例如:计算某一时刻的短路电流有效值,用以校验开关设备的开断能力和确定电抗器的电抗值;计算短路后较长时间短路电流有效值,用以校验设备的热稳定值;计算短路电流冲击值,用以校验设备动稳定。4.1.2 短路电流计算的一般规定 (1) 电力系统中所有电源均在额定负荷下运行;(2) 短路种类:一般以三相短路计算;(3) 接线方式应是可能发生最大短路电流的正常方式(即最大运行方式),而不能用仅在切换过程中可能并列运行的接线方式;(4) 短路电流计算点:在正常接线方式时,通过电气设备的短路电流为最大的地点。4.2 短路电流的计算 取基准容量为,基准电压为,又依公式:;。计算出基准值如下表4-1所示:表4-1 基准值3710.51.565.5013.691.104.2.1 计算变压器和线路的等值电抗本次设计选取的变压器为S9系列的双绕组变压器,因此变压器的电抗值只有一个,计算如下: (4-1)线路的等值电抗计算如下(35KV进线侧的电线长约20km,取线路标准电抗参数为0.4), (4-2)4.2.2 系统等值网络图 系统等值网络图如下图4-1所示:图4-1 系统等值网络图4.2.3 短路计算点的选择及短路电流的计算 选择等值电抗图中的d1、d2、d3点为短路点,如上图(4-1)所示。(1) 点短路时(如图4-2所示) 图4-2 d1点短路等值电抗图次暂态短路电流标幺值的计算: (4-3) 次暂态(0s)和4s时的短路电流相等,三相短路电流有名值为: (4-4) 两相短路电流为:0.866×5.34=4.62KA (4-5)冲击电流为: (4-6) 短路容量为: (4-7) (4-8) (2) 点短路时(如图4-3所示):图4-3 点短路时的系统网络等值简化次暂态短路电流标幺值的计算: (4-9)次暂态(0s)和4s时的短路电流相等,三相短路电流有名值为: (4-10)两相短路电流为:0.866×2.69=2.33KA (4-11) 冲击电流为: (4-12)短路容量为: (4-13) (4-14) (3)点短路时(如图4-4所示):图4-4 点短路时的系统网络等值简化次暂态短路电流标幺值的计算: (4-15 )次暂态(0s)和4s时的短路电流相等,三相短路电流有名值为: (4-16)两相短路电流为:0.866×4.71=4.08KA (4-17) 冲击电流为: (4-18) 短路容量为: (4-19)第5章 主要电气设备的选择5.1 电气设备选择概述5.1.1 选择的原则(1) 应满足正常运行、检修、短路、和过电压情况下的要求,并考虑远景发展。(2) 应按当地环境条件校核。(3) 应力求技术先进和经济合理(4) 与整个工程的建设标准应协调一致。(5) 同类设备应尽量减少种类。(6) 选用的新产品均应具有可靠的实验数据。(7) 设备的选择和校验。5.1.2 电气设备和载流导体选择的一般条件(1) 按正常工作条件选择 额定电压:所选电气设备和电缆的最高允许工作电压,不得低于装设回路的最高运行电压UNUNs 额定电流:所选电气设备的额定电流IN,或载流导体的长期允许电流Iy,不得低于装设回路的最大持续工作电流I max 。计算回路的最大持续工作电流I max 时,应考虑回路在各种运行方式下的持续工作电流,选用最大者。(2) 按短路状态校验 。 热稳定效验:当短路电流通过被选择的电气设备和载流导体时,其热效应不应超过允许值,It2t> Qk,tk=tin+ta,校验电气设备及电缆(36KV厂用馈线电缆除外)热稳定时,短路持续时间一般采用后备保护动作时间加断路器全分闸时间。 动稳定校验:iesish,用熔断器保护的电气设备和载流导体,可不校验热稳定;电缆不校验动稳定;(3) 短路校验时短路电流的计算条件:所用短路电流其容量应按具体工程的设计规划容量计算,并应考虑电力系统的远景发展规划;计算电路应按可能发生最大短路电流的正常接线方式,而不应按仅在切换过程中可能并列的接线方式;短路的种类一般按三相短路校验;对于发电机出口的两相短路或中性点直接接地系统、自耦变压器等回路中的单相、两相接地短路较三相短路更严重时,应按严重情况校验。5.2 高压断路器及隔离开关的选择5.2.1 35KV电压等级的断路器及隔离开关的选择(1) 出线侧断路器、母联断路器的选择流过断路器的最大持续工作电流:额定电压选择:额定电流的选择:开断电流选择: (点短路电流)选用SW3-35型断路器,其技术参数如下表2-3所示:表2-3 型断路器的技术参数断路器型号额定电压KV额定电流A最高工作电压KV额定断流容量KA极限通过电流KA热稳定电流KA固有分闸时间S峰值4S35200040.56.6176.60.06热稳定效验:电弧持续时间取0.04s,热稳定时间为:因此需要计入短路电流的非周期分量,查表得非周期分量的等效时间T=0.05S,所以,满足热稳定效验。动稳定效验:满足动稳定效验。因此所选断路器合适。(2) 主变压器侧短路器的选择额定电压选择:额定电流的选择:开断电流选择: (点短路电流)由上表可知,同样满足主变压器侧断路器的选择。其动稳定,热稳定计算与母联相同。满足动稳定和热稳定要求,因此所选隔离开关合适。5.2.2 10KV电压等级的断路器及隔离开关的选择(1) 出线侧断路器、母联断路器的选择流过断路器的最大持续工作电流:额定电压选择:额定电流的选择:开断电流选择: (点短路电流)选用型断路器,其技术参数如下表2-5所示:表2-5 型断路器的技术参数断路器型号额定电压KV额定电流A最高工作电压KV额定断流容量KA极限通过电流KA热稳定电流KA固有分闸时间S峰值1S101250050028.97143.20.06热稳定效验:电弧持续时间取0.04s,热稳定时间为:因此需要计入短路电流的非周期分量,查表得非周期分量的等效时间T=0.05S,所以,满足热稳定效验。动稳定效验:满足动稳定效验。因此所选断路器合适。(2) 主变压器侧断路器的选择额定电压选择:额定电流的选择开断电流选择: (d3点短路电流)由上表可知,同样满足主变压器侧断路器的选择。其动稳定,热稳定计算与母联相同。5.3 母线的选择5.3.1 35KV母线选择(1) 按经济电流密度选择导体截面 选用LGJ-70铝绞线,满足长期发热条件的要求(2)热稳定效验用插值法得:查表可知:所选截面,能满足热稳定要求。(3)共振效验取3.56,L=1.2m,则当固有频率在30160HZ以外时,有1或p<1,在此情况下,可不考虑共振的影响,取=1(4) 动稳定效验相间电动力的数值为:相间应力的数值为:根据,可以查得形状系数条间电动力为:最大允许衬垫跨距:铝双条导体的取1003,则衬垫临界跨距为:由于和均大于1.2m,因此不需装设衬垫。可以满足动稳定要求所选母线符合要求5.3.2 10KV母线选择(1) 按经济电流密度选择导体截面查槽形铝导体长期允许载流量表,选用的槽形铝导体,平放。(2) 热稳定效验用插值法得:查表可知:所选截面,能满足热稳定要求。(3) 共振效验导体一阶固有频率当固有频率在30160HZ以外时,有1或p<1,在此情况下,可不考虑共振的影响,取=1(4) 动稳定效验相间电动力的数值为:相间应力的数值为:对于双槽型导体,计算相间和条间电动力时,均取条间电动力为:最大允许衬垫跨距:铝双条导体的取1003,则衬垫临界跨距为:由于和均大于1.2m,因此不需装设衬垫。条间计算应力:所以 可以满足动稳定要求所选母线符合要求5.4 绝缘子和穿墙套管的选择5.4.1 35KV母线的绝缘子的选择初选 型支柱式绝缘子,机械负载为,在跨距为1.2m时有受到机械荷载为:满足动稳定性要求所选母线符合要求5.4.2 10KV母线的绝缘子的选择初选 型支柱式绝缘子,机械负载为,在跨距为1.2m时有受到机械荷载为:满足动稳定性要求所选母线符合要求5.4.3 10KV母线的穿墙套管的选择初选型穿墙套管,机械负载为,5S时的热稳定电流为75KA。热稳定效验:满足热稳定要求在跨距为1.2m时有受到机械荷载为:满足动稳定性要求所选母线符合要求 第6章 继电保护的设计基础 6.1 变电站继电保护的发展 变电站是电力系统的重要组成部分,它直接影响整个电力系统的安全与经济运行,是联系发电厂和用户的中间环节,起着变换和分配电能的作用。电气主接线是发电厂变电所的主要环节,电气主接线的拟定直接关系着全厂(所)电气设备的选择、配电装置的布置、继电保护和自动装置的确定,是变电站电气部分投资大小的决定性因素。 继电保护发展现状,电力系统的飞速发展对继电保护不断提出新的要求,电子技术、计算机技术与通信技术的飞速发展又为继电保护技术的发展不断地注入了新的活力,因此,继电保护技术得天独厚,在40余年的时间里完成了发展的4个历史阶段。随着电力系统的高速发展和计算机技术、通信技术的进步,继电保护技术面临着进一步发展的趋势。国内外继电保护技术发展的趋势为:计算机化,网络化,保护、控制、测量、数据通信一体化和人工智能化。继电保护的未来发展,继电保护技术未来趋势是向计算机化,网络化,智能化,保护、控制、测量和数据通信一体化发展。微机保护技术的发展趋势: 高速数据处理芯片的应用 微机保护的网络化 保护、控制、测量、信号、数据通信一体化 继电保护的智能化。6.2 继电保护装置的基本要求 继电保护及自动装置属于二次部分,它对电力系统的安全稳定运行起着至关重要的作用。对继电保护装置的基本要求有四点:即选择性、灵敏性、速动性和可靠性。6.3 继电保护整定 继电保护整定的基本任务就是要对各种继电保护给出整定值,而对电力系统中的全部继电保护来说,则需要编出一个整定方案。整定方案通常可按电力系统的电压等级或者设备来编制,并且还可按继电保护的功能划分小方案分别进行。例如:35kV变电站继电保护可分为:相间短路的电压、电流保护,单相接地零序电流保护,短线路纵联差动保护等。整定计算一般包括动作值的整定、灵敏度的校验和动作时限的整定三部分。并且分为: 无时限电流速断保护的整定。 动作时限的整定。 带时限电流速断保护的整定。6.4本系统故障分析 设计35/10kV系统为双电源35kV内桥接线,10kV侧单母线分段接线,所接负荷属一二类负荷居多。1) 本设计中的电力系统具有非直接接地的架空线路及中性点不接地的电力变压器等主要设备。就线路来讲,其主要故障为单相接地、两相接地和三相接地。2) 电力变压器的故障,分为外部故障和内部故障两类。 变压器的外部故障常见的是高低压套管及引线故障,