初一数学人教版七下几何复习专题(10页).doc
-初一数学人教版七下几何复习专题-第 10 页初一数学人教版七下几何复习专题专题一、基本概念与定理专题考点1:邻补角、对顶角定义例1下列说法中,正确的是( )(A)相等的角是对顶角 (B)有公共顶点,并且相等的角是对顶角(C)如果1与2是对顶角,那么1=2 (D)两条直线相交所成的两个角是对顶角例2如图所示,1的邻补角是( ) A.BOC B.BOE和AOF C.AOF D.BOC和AOF考点2:垂直公理和平行公理例3下列说法中错误的个数是( )(1)过一点有且只有一条直线与已知直线平行。(2)过一点有且只有一条直线与已知直线垂直。(3)在同一平面内,两条直线的位置关系只有相交、平行两种。(4)不相交的两条直线叫做平行线。(5)有公共顶点且有一条公共边的两个角互为邻补角。A. 1个 B. 2个 C. 3个 D. 4个 考点3:两点之间线段最短、垂线段最短例4.如图,一辆汽车在直线形的公路AB上由A向B行使,M、N分别是位于公路AB两侧的村庄. 设汽车行使到公路AB上点P位置时,距离村庄M最近;行使到点Q位置时,距离村庄N最近.请你在图中公路AB上分别画出点P、Q的位置.(保留画图痕迹) 当汽车从A出发向B行使时,在公路AB的哪一段上距离M、N两村都越来越近?在哪一段上距离村庄N越来越近,而离村庄M却越来越远?(分别用文字语言表示你的结论,不必证明)考点4:同位角、内错角与同旁内角定义例5下列所示的四个图形中,1和2是同位角的是( )A. B. C. D. 例6如图4所示,下列说法中错误的是 ( ).1和3是同位角; 1和5是同位角;1和2是同旁内角; 1和4是内错角.A.和 B.和 C.和 D. 和考点5:平行线性质与判定定理例7如图,给出了过直线外一点作已知直线的平行线的方法,其依据是( )A同位角相等,两直线平行 B内错角相等,两直线平行C同旁内角互补,两直线平行 D两直线平行,同位角相等例8(2007浙江绍兴课改)学习了平行线后,小敏想出了过己知直线外一点画这条直线的平行线的新方法,她是通过折一张半透明的纸得到的(如图(1)(4) ):从图中可知,小敏画平行线的依据有()两直线平行,同位角相等; 两直线平行,内错角相等;同位角相等,两直线平行; 内错角相等,两直线平行 考点6:命题例9下列命题中,真命题是( ).A在同一平面内,垂直于同一条直线的两条直线平行B相等的角是对顶角C两条直线被第三条直线所截,同位角相等D同旁内角互补例10.命题“等角的补角相等”的题设是_,结论是_.考点7:平移的概念例11.(2006黑龙江中考题)下列图形中只能用其中一部分平移可以得到的是()A B C D考点8:平移的基本性质例12.如右图所示,三角形DEF是由三角形ABC( )得到的A.沿射线AD的方向移动了AD长B.沿射线AC的方向移动了AC长 C.沿射线EC的方向移动了EC长 D.沿射线FC的方向移动了FC长考点9:平移的作图例13.(2007贵州贵阳)如图,方格中有一条美丽可爱的小金鱼(1)若方格的边长为1,则小鱼的面积为 (2)画出小鱼向左平移3格再向上平移2格后的图形(不要求写作图步骤和过程)考点10:各象限内的点的坐标特征及应用解决有关象限点问题的关键是熟记各象限的符号特征,由一到四象限点的坐标特征分别为(,)、(,)、(,)、(,).例14.(江西省中考题)在平面直角坐标系中,点P(-l,m2+1)一定在( ) (A)第一象限 (B)第二象限 (C)第三象限 (D)第四象限例15. (哈尔滨市中考题)若点P(m,n)在第二象限,则点Q(-m,-n)在( ) (A)第一象限 (B)第二象限 (C)第三象限 (D)第四象限 例16.(2006河北省)在平面直角坐标系中,若点P(x2,x)在第二象限,则x的取值范围为()A.0x2B. x2C. x0D. x2考点11:坐标轴上的点的坐标特征及应用 坐标轴上点的坐标的特征:x轴上的点的纵坐标为0,即(x,0);y轴上点的横坐标是0,即(0,y)例17.(曲靖市中考题)点P(m+3,m+1)在x轴上,则点P的坐标为( ) A(0,-2) B(2,0) C(4,O) D(O,-4)例18. (贵阳市中考题)在坐标平面内有一点P(a,b),若ab=0,那么点P的位置在( )A原点 Bx轴上 Cy轴上 D.坐标轴上考点12:平行于坐标轴的直线上的点的坐标特征及应用 点P1(x1,y1)和P2(x2,y2)在平行于x轴的直线上x1x2,y1=y2;点P1(x1,y1)和P2(x2,y2)在平行于x轴的直线上x1=x2,y1y2.例19.(江苏省中考题)已知点A(m,-2)和点B(3,m-1),且直线ABx轴,则m的值为 ,AB=_考点13:通过坐标原点确定点的坐标例20.(杭州市中考题)如图,的围棋盘放在某个平面直角坐标系内,白棋 的坐标为,白棋的坐标为,那么黑棋的坐标应该是 。 考点14:根据对称确定点的坐标点对称的知识:关于x轴对称,横坐标不变,纵坐标为相反数。关于y轴对称,横坐标为相反数,纵坐标不变。关于原点对称,横坐标、纵坐标都为相反数例21.(青海省中考题)已知点A(3,n)关于y轴对称的点的坐标为(-3,2),那么n的值为 _ ,点A关于原点对称的点的坐标是 _考点15:角平分线上的点特征及应用一、三象限角平分线上的点横、纵坐标相等,可记为();二、四象限角平分线上的点横、纵坐标互为相反数,可记为().例22已知点Q(m+3,-2m+3)在第一象限的角平分线上,则m = _.考点16:点到坐标轴距离点P(a,b)到x轴的距离为|b|,到y轴的距离为|a|.例23. 已知x轴上的点P到y轴的距离为3,则点P的坐标为( ) A(3,0) B(0,3) C(0,3)或(0,-3) D(3,0)或(-3,0)考点17:用坐标表示平移在平面直角坐标系中,其中,.(1)将点向右(或左)平移a个单位长度,可以得到对应点(或);(2)将点向上(或下)平移b个单位长度,可以得到对应点.例24线段CD是由线段AB平移得到的。点A(1,4)的对应点为C(4,7),则点B( 4, 1)的对应点D的坐标为( )A(2,9) B(5,3) C(1,2) D( 9, 4)考点18:不移不知道,移移真奇妙ABCDABCD图4例25(2006年滨州市中考题)如图4,是一块矩形ABCD的场地,长AB=102米,宽AD=51米,从A、B两处入口的中路宽都为1米,两小路汇合处路口宽为2米,其余部分种植草坪面积为( )平方米(A)5050(B)4900(C)5000(D)4998考点19:数三角形的个数例26图中三角形的个数是( )A8 B9 C10 D11 例27当三角形内部有1个点时,互不重叠的三角形的数目为3;当三角形内部有2个点时,互不重叠的三角形的数目为5(1)当三角形内部有3个点时,互不重叠的三角形的数目为_;(2)当三角形内部有4个点时,互不重叠的三角形的数目为_;(3)当三角形内部有n个点时,互不重叠的三角形的数目为_;(4)互不重叠的三角形的数目能否为2007,若能请求出三角形内部点的个数;若不能,请说明理由考点20:三角形三边关系例28(2006广州)已知四组线段的长分别如下,以各组线段为边,能组成三角形的是( ) Al,2,3 B2,5,8 C3,4,5 D4,5,10例29以长为3cm,5cm,7cm,10cm的四根木棍中的三根木棍为边,可以构成三角形的个数是( )A2个 B3个 C4个 D5个例30如果三条线段a、b、c,可组成三角形,且a=3,b=5,c是偶数,则c的值为 _例31用7根火柴棒首尾顺次连接摆成一个三角形,能摆成的不同的三角形的个数为 例32等腰三角形的两边分别长7cm和13cm,则它的周长是( )A.27cm B.33cm C.27cm或33cm D.以上结论都不对考点21:三角形高、角平分线和中线例33下面四个图形中,线段BE是ABC的高的图是( )A B C D例34以下说法错误的是( ) (A)三角形的三条高一定在三角形内部交于一点 (B)三角形的三条中线一定在三角形内部交于一点 (C)三角形的三条角平分线一定在三角形内部交于一点 (D)三角形的三条高可能相交于外部一点例35如果一个三角形的三条高的交点恰好是这个三角形的一个顶点,那么这个三角形是( ) (A)锐角三角形 (B)直角三角形 (C)钝角三角形 (D)不能确定例36已知:AE是ABC的中线,如果AB10mm、AC8mm,则ABE与ACE的周长之差为 ,面积之比是 .例37如图所示,在ABC中,已知点D,E,F分别为边BC,AD,CE 的中点, 且S ABC=4cm2,则S阴影等于( )(A)2cm2 (B)1cm2 (C)cm2 (D)cm2考点22:三角形稳定性例38如图所示,一扇窗户打开后,用窗钩AB可将其固定,这里所运用的几何原理是( )(A)三角形的稳定性(B)两点之间线段最短 (C)两点确定一条直线(D)垂线段最短例39下列由几根木条用钉子钉成如下的模型,其中在同一平面内不具有稳定性的是( ) A B C D 考点23:多边形的对角线例40观察下面图形, 并回答问题.四边形、五边形、六边形各有几条对角线?从中你能得到什么规律?根据规律你知道七边形有多少条对角线吗?你知道边形有多少条对角线吗?例41从一个多边形的一个顶点出发,可引12条对角线,则这个多边形的边数为( )A12 B13 C14 D15 考点24:平面镶嵌例42 装饰大世界出售下列形状的地砖:正方形;长方形;正五边形;正六边形若只选购其中某一种地砖镶嵌地面,不可供选用的地砖是( ) A. B. C. D. 例43(2006年武汉市)一幅美丽的图案,在某个顶点处由四个边长相等的正多边形镶嵌而成其中三个分别为正三角形、正四边形、正六边形,那么另一个为( )A. 正三边形 B. 正四边形 C. 正五边形 D. 正六边形专题二、平行线与多边形中有关角的计算专题考点1:相交线与平行线有关计算例1如图,为平角,则有_ABCDOE例2(2007湖北襄樊非课改)如图,直线相交于点,于,则的度数是( )ABCD例3(2007内蒙赤峰课改)如图,点在的延长线上,若,则的度数为( )ABCD例4(2007北京课标)如图,中,过点且平行于,若,则的度数为( )ABCDABCDE例5(2007广东肇庆课改)如图,已知ABCD,C=35°,BC平分ABE,则ABE的度数是( )A. 17.5° B. 35° C. 70° D. 105°例6(2007年湖南郴州)如图9,已知ABCD,直线MN分别交AB,CD于E,F,MFD50o,EG平分MEB,那么MEG的大小是_度例7(2007湖北十堰课改)一条公路两次转弯后又回到原来的方向(即,如图)如果第一次转弯时的,那么,应是( )AB CD例8.如图,已知,AC平分,且 (1)求的度数;(2)求的度数例8如图,把长方形纸片沿折叠,使,分别落在,的位置,若,则等于()考点2:三角形内角和与外角性质有关计算例9三角形的三个内角的比为1:3:5,那么这个三角形的最大内角的度数为_例10如果三角形的一个外角等于和它相邻的内角的倍,等于与它不相邻的一个内角的倍,则此三角形各内角的度数是_。例11如图,已知点是的边的延长线上的一点,于,交于,且,求的度数12BAECDMI(第13题)(第12题)例12.如图,1=,2=,A=,则BDC的度数是 例13如图,ABC中,A=1000,BI、CI分别平分ABC,ACB,则BIC= , 若BM、CM分别平分ABC,ACB的外角平分线,则M= (注:此题型详见同步导学第57页)例14.已知,如图,在 ABC中,AD,AE分别是 ABC的高和角平分线,若B=30°,C=50° (1)求DAE的度数。(2)试写出 DAE与C-B有何关系?(不必证明) 例15如图6,光线照射到平面镜CD上,然后在平面镜AB和CD之间来回反射,这时光线的入射角等于反射角,即16,53,24,若已知1550,3750,那么2等于( )(A)500 (B)550 (C)660 (D)650考点3:平行线与三角形结合有关计算例16.(2007湖南永州课改)如图所示,E27°,C52°,则的度数为( ) A25° B63° C79° D101°(第16题)(第18题)(第17题)例17如图,ABCD,B=45°,D=E,求E的度数=_例18如图,C处在B处的北偏西方向,C处在A处的北偏西方向,则ACB的度数为 例19如图,若ABCD,EF与AB 、CD分别相交于E、F,EPEF,EFD的平分线与EP相交于点P,且BEP=40°,求P的度数.考点4:多边形内角和与外角和多边形的内角和随边数的变化而变化,而外角和是一个定值,它不随边数的变化而变化涉及内角和题目可分为:(1)已知边数,求内角和其方法是直接将边数代入内角和公式即可;(2)已知角度求边数其方法是逆用公式列方程可求边数例20已知一个多边形的内角和为1080°则这个多边形是边形例21已知一个多边形的外角和等于它的内角和,则这个多边形是( )A 三角形 B 四边形 C 五边形 D 六边形例22一个多边形的外角和等于它的内角和的,则这个多边形的边数是_例23如果n边形的边数增加一边,那么这个n边形的内角和增加的度数是( )A 360° B 270° C 180° D 90°例24一个n边形的每一个外角都等于45°,则这个n边形的内角和是例25一个n边形(n)的内角之和与某一外角之和为630°,求n边形的边数和内角和例26.如图3,求五角星五个顶角:A、B、C、D、E的度数和。(注:该题型详见同步导学第67-68页学生作品)专题三、平行线与三角形中的几何推理与探索专题考点1:说理填空例1.(1)如图:123,完成说理过程并注明理由:(1)因为 12 所以 _ ( )(2)因为 13 所以 _ ( )例2.如图:已知ABCD,12.说明BECF. 因为 ABCD 所以 ABCDCB () 又 12 所以 ABC1DCB2 即 EBCFCB 所以 BECF ()例3填空:如图,ADBC于D,EGBC于G,E =1,可得AD平分BAC理由如下:ADBC于D,EGBC于G( ) ADC =EGC = 90°( )ADEG( ) 1 = ( ) = 3 ( )又E = 1( ) 2 =3( ) AD平分BAC(角平分线的定义 ) 例4已知:如图4,ADBE,1=2,求证:A=E例5已知,如图,11320,ACB480,23,FHAB于H,问AB与CD是否垂直?并说明理由。例6.如图, ADBC , AD平分EAC,你能确定B与C的数量关系吗?请说明理由。例7如图,ABC中,A400,把ABC纸片沿DE折叠,当点A落在四边形BCDE内部的处时,求12的度数,并说明理由。例8.如图,已知直线ABCD,求A+C与AEC的大小关系并说明理由. (此题型详见同步导学第17页)例9.已知:ABC中,ADBC,AE平分BAC,请根据题中所给的条件,解答下列问题:(1)如图25-1,若BAD=600,EAD=150,则C= 度,(2)如图25-2,若BAD=620,EAD=220,则C= 度,(3)通过以上的计算你发现EAD和CB之间的关系应为:CB= EAD;(4)在图25-3的ABC中,C>B,那么(3)中的结论仍然成立吗?为什么?例10.实验证明,平面镜反射光线的规律是:射到平面镜上的光线和被反射出的光线与平面镜所夹的锐角相等. (1)如图,一束光线m射到平面镜a上,被a反射到平面镜b上,又被b反射.若被b反射出的光线n与光线m平行,且1=50°,则2= °,3= °. (2)在(1)中,若1=55°,则3= °若1=40°,则3= °.(3)由(1)、(2),请你猜想:当两平面镜a、b的夹角3= °时,可以使任何射到平面镜a上的光线m,经过平面镜a、b的两次反射后,入射光线m与反射光线n平行.你能说明理由吗?例11如图11,直线,连结,直线及线段把平面分成、四个部分,规定:线上各点不属于任何部分当动点落在某个部分时,连结,构成,三个角(提示:有公共端点的两条重合的射线所组成的角是角)(1)当动点落在第部分时,求证:;(2)当动点落在第部分时,是否成立(直接回答成立或不成立)?图11(3)当动点在第部分时,全面探究,之间的关系,并写出动点的具体位置和相应的结论选择其中一种结论加以证明