勾股定理经典例题(含答案)45327(7页).doc
-勾股定理经典例题(含答案)45327-第 7 页勾股定理经典例题类型一:勾股定理的直接用法 1、在RtABC中,C=90° (1)已知a=6, c=10,求b, (2)已知a=40,b=9,求c; (3)已知c=25,b=15,求a. 思路点拨: 写解的过程中,一定要先写上在哪个直角三角形中,注意勾股定理的变形使用。 举一反三 【变式】:如图B=ACD=90°, AD=13,CD=12, BC=3,则AB的长是多少? 类型二:勾股定理的构造应用 2、如图,已知:在中,. 求:BC的长. 150°20m30m1、某市在旧城改造中,计划在市内一块如图所示的三角形空地上种植草皮以美化环境,已知这种草皮每平方米售价a元,则购买这种草皮至少需要() A、450a元B、225a 元C、150a元 D、300a元 举一反三【变式1】如图,已知:,于P. 求证:. 【变式2】已知:如图,B=D=90°,A=60°,AB=4,CD=2。求:四边形ABCD的面积。 类型三:勾股定理的实际应用 (一)用勾股定理求两点之间的距离问题 3、如图所示,在一次夏令营活动中,小明从营地A点出发,沿北偏东60°方向走了到达B点,然后再沿北偏西30°方向走了500m到达目的地C点。 (1)求A、C两点之间的距离。 (2)确定目的地C在营地A的什么方向。 举一反三 【变式】一辆装满货物的卡车,其外形高2.5米,宽1.6米,要开进厂门形状如图的某工厂,问这辆卡车能否通过该工厂的厂门? (二)用勾股定理求最短问题 4、如图,一圆柱体的底面周长为20cm,高为4cm,是上底面的直径一只蚂蚁从点A出发,沿着圆柱的侧面爬行到点C,试求出爬行的最短路程 类型四:利用勾股定理作长为的线段 5、作长为、的线段。 作法:如图所示 举一反三 【变式】在数轴上表示的点。 解析:可以把看作是直角三角形的斜边, 为了有利于画图让其他两边的长为整数, 而10又是9和1这两个完全平方数的和,得另外两边分别是3和1。 作法:如图所示在数轴上找到A点,使OA=3,作ACOA且截取AC=1,以OC为半径, 以O为圆心做弧,弧与数轴的交点B即为。类型五:逆命题与勾股定理逆定理 6、写出下列原命题的逆命题并判断是否正确 1原命题:猫有四只脚(正确) 2原命题:对顶角相等(正确) 3原命题:线段垂直平分线上的点,到这条线段两端距离相等(正确) 4原命题:角平分线上的点,到这个角的两边距离相等(正确) 7、如果ABC的三边分别为a、b、c,且满足a2+b2+c2+50=6a+8b+10c,判断ABC的形状。 。 举一反三【变式1】四边形ABCD中,B=90°,AB=3,BC=4,CD=12,AD=13,求四边形ABCD的面积。 【变式2】已知:ABC的三边分别为m2n2,2mn,m2+n2(m,n为正整数,且mn),判断ABC是否为直角三角形. 【变式3】如图正方形ABCD,E为BC中点,F为AB上一点,且BF=AB。 请问FE与DE是否垂直?请说明。 【答案】答:DEEF。 证明:设BF=a,则BE=EC=2a, AF=3a,AB=4a, EF2=BF2+BE2=a2+4a2=5a2; DE2=CE2+CD2=4a2+16a2=20a2。 连接DF(如图) DF2=AF2+AD2=9a2+16a2=25a2。 DF2=EF2+DE2, FEDE。练习一、判断直角三角形问题:1、.满足下列条件的ABC,不是直角三角形的是A.b2=c2a2 B.abc=345 C.C=AB D.ABC=1213152、若一个三角形的三边长的平方分别为:32,42,x2则此三角形是直角三角形的x2的值是A.42B.52 C.7D.52或73、如果ABC的三边分别为m21,2 m,m2+1(m1)那么A.ABC是直角三角形,且斜边长为m2+1 B.ABC是直角三角形,且斜边长2 为mC.ABC是直角三角形,但斜边长需由m的大小确定 D.ABC不是直角三角形4、已知RtABC中,C=90°,若a+b=14cm,c=10cm,则RtABC的面积是() A、24cm2B、36cm2C、48cm2D、60cm25、下面几组数:7,8,9;12,9,15;m2 + n2, m2 n2, 2mn(m,n均为正整数,mn);,.其中能组成直角三角形的三边长的是( )A.;B.;C.;D.6、 三角形的三边长为,则这个三角形是( ) A. 等边三角形; B. 钝角三角形; C. 直角三角形; D. 锐角三角形.7、已知 ,则由此为三边的三角形是 三角形.9、已知a,b,c为ABC三边,且满足a2+b2+c2+338=10a+24b+26c.试判断ABC的形状.10、若ABC的三边长为a,b,c,根据下列条件判断ABC的形状.(1)a2+b2+c2+200=12a+16b+20c (2)a3a2b+ab2ac2+bc2b3=011、已知,ABC中,AB=17cm,BC=16cm,BC边上的中线AD=15cm,试说明ABC是等腰三角形。经典例题精析类型一:勾股定理及其逆定理的基本用法 1、若直角三角形两直角边的比是3:4,斜边长是20,求此直角三角形的面积。 举一反三 【变式1】等边三角形的边长为2,求它的面积。 注:等边三角形面积公式:若等边三角形边长为a,则其面积为a。 【变式2】直角三角形周长为12cm,斜边长为5cm,求直角三角形的面积。 【变式3】若直角三角形的三边长分别是n+1,n+2,n+3,求n。 总结升华:注意直角三角形中两“直角边”的平方和等于“斜边”的平方,在题目没有给出哪条是直角边哪条是斜边的情况下,首先要先确定斜边,直角边。 【变式4】以下列各组数为边长,能组成直角三角形的是( ) A、8,15,17 B、4,5,6 C、5,8,10 D、8,39,40 类型二:勾股定理的应用 2、如图,公路MN和公路PQ在点P处交汇,且QPN30°,点A处有一所中学,AP160m。假设拖拉机行驶时,周围100m以内会受到噪音的影响,那么拖拉机在公路MN上沿PN方向行驶时,学校是否会受到噪声影响?请说明理由,如果受影响,已知拖拉机的速度为18km/h,那么学校受影响的时间为多少秒? 总结升华:勾股定理是求线段的长度的很重要的方法,若图形缺少直角条件,则可以通过作辅助垂线的方法,构造直角三角形以便利用勾股定理。 举一反三 【变式1】如图学校有一块长方形花园,有极少数人为了避开拐角而走“捷径”,在花园内走出了一条“路”。他们仅仅少走了_步路(假设2步为1m),却踩伤了花草。 【答案】4 【变式2】如图中的虚线网格我们称之为正三角形网格,它的每一个小三角形都是边长为1的正三角形,这样的三角形称为单位正三角形。 (1)直接写出单位正三角形的高与面积。 (2)图中的平行四边形ABCD含有多少个单位正三角形?平行四边形ABCD的面积是多少? (3)求出图中线段AC的长(可作辅助线)。 类型三:数学思想方法 方程的思想方法 4、如图所示,已知ABC中,C=90°,A=60°,求、的值。 思路点拨:由,再找出、的关系即可求出和的值。 解:在RtABC中,A=60°,B=90°-A=30°, 则,由勾股定理,得。 因为,所以, ,。 总结升华:在直角三角形中,30°的锐角的所对的直角边是斜边的一半。 举一反三:【变式】如图所示,折叠矩形的一边AD,使点D落在BC边的点F处,已知AB=8cm,BC=10cm,求EF的长。 解:因为ADE与AFE关于AE对称,所以AD=AF,DE=EF。 因为四边形ABCD是矩形,所以B=C=90°, 在RtABF中, AF=AD=BC=10cm,AB=8cm, 所以。 所以。 设,则。 在RtECF中,即,解得。 即EF的长为5cm。三、折叠问题1、已知,如图长方形ABCD中,AB=3cm,AD=9cm,将此长方形折叠,使点B与点D重合,折痕为EF,则ABE的面积为() A、6cm2B、8cm2C、10cm2D、12cm2ABEFDC第11题图2、 如图,有一个直角三角形纸片,两直角边AC=6cm,BC=8cm,现将直角边AC沿直线AD折叠,使它落在斜边AB上,且与AE重合,你能求出CD的长吗?3、已知,如图,折叠长方形(四个角都是直角,对边相等)的一边AD使点D落在BC边的点F处,已知AB = 8cm,BC = 10 cm,求EC的长