大学物理化学1-热力学第一定律课后习题及答案(6页).doc
-大学物理化学1-热力学第一定律课后习题及答案-第 6 页热力学第一定律课后习题一、是非题下列各题中的叙述是否正确?正确的在题后括号内画“Ö”,错误的画“´”。1. 在定温定压下,CO2由饱和液体转变为饱和蒸气,因温度不变,CO2的热力学能和焓也不变。 ( )2. dU = nCV,mdT这个公式对一定量的理想气体的任何pVT过程均适用。( )3. 一个系统从始态到终态,只有进行可逆过程才有熵变。 ( )4. 25时H2(g)的标准摩尔燃烧焓等于25时H2O(g)的标准摩尔生成焓。( )5. 稳定态单质的DfH(800 K) = 0。 ( )二、选择题选择正确答案的编号,填在各题后的括号内:1. 理想气体定温自由膨胀过程为:( )。 (A)Q > 0; (B)DU < 0; (C)W < 0; (D)DH = 0。2. 对封闭系统来说,当过程的始态和终态确定后,下列各项中没有确定的值的是:( )。 ( A ) Q; ( B ) QW; (C ) W( Q = 0 ); ( D ) Q( W = 0 )。3. pVg = 常数(g = Cp,m/CV,m)适用的条件是:( ) (A)绝热过程; ( B)理想气体绝热过程; ( C )理想气体绝热可逆过程; (D)绝热可逆过程。4. 在隔离系统内:( )。 ( A ) 热力学能守恒,焓守恒; ( B ) 热力学能不一定守恒,焓守恒; (C ) 热力学能守恒,焓不一定守恒; ( D) 热力学能、焓均不一定守恒。5. 从同一始态出发,理想气体经可逆与不可逆两种绝热过程:( )。 ( A )可以到达同一终态; ( B )不可能到达同一终态; ( C )可以到达同一终态,但给环境留下不同影响。6. 当理想气体反抗一定的压力作绝热膨胀时,则:( )。 ( A )焓总是不变; (B )热力学能总是增加; ( C )焓总是增加; (D )热力学能总是减少。7. 已知反应H2(g) +O2(g) = H2O(g)的标准摩尔反应焓为DrH(T),下列说法中不正确的是:( )。 (A)DrH(T)是H2O(g)的标准摩尔生成焓; (B)DrH(T)是H2O(g)的标准摩尔燃烧焓; (C)DrH(T)是负值; (D)DrH(T)与反应的DrU数值不等。三、计算题习题110 mol理想气体由25,1.0 MPa膨胀到25,0.1 MPa,设过程为:( 1 )自由膨胀;( 2 )对抗恒外压力0.1 MPa膨胀;( 3 )定温可逆膨胀。试计算三种膨胀过程中系统对环境作的功。习题2298 K时,将0.05 kg的N2由0.1 MPa定温可逆压缩到2 MPa,试计算此过程的功。如果被压缩了的气体在反抗外压力为0.1 MPa下做定温膨胀再回到原来状态,问此过程的功又是多少?习题3某理想气体,其CV,m = 20 J·K-1·mol-1,现有该气体10 mol处于283 K,采取下列不同途径升温至566 K。试计算各个过程的Q,W,DU,DH,并比较之。 ( 1 )体积保持不变; ( 2 )系统与环境无热交换; ( 3 )压力保持不变。习题4试求下列过程的DU和DH:A(g) n = 2mol p1= 0.663kPaT1 = 400K A(l)n = 2molp2= 101.325kPaT2 = 350KDU=?DH=?已知液体A的正常沸点为350 K,此时的汽化焓:DVapHm = 38 kJ·mol-1。A蒸气的平均定压摩尔热容Cp,m= 30 J·K-1·mol-1 。(蒸气视为理想气体)习题5根据下列数据,求乙烯C2H4(g)的标准摩尔生成焓与标准摩尔燃烧焓:(1)C2H4(g) + H2(g) = C2H6(g) , DrH m y, l = 137 kJ·mol-1 ;(2)C2H6(g) + (7/2)O2(g) = 2CO2(g) + 3H2O(l) ,DrH m y, 2 = 1560 kJ·mol-1 ;(3)C(石墨) + O2(g) = CO2(g) , DrH m y, 3 = 393.5 kJ·mol-1 ;(4)H2(g) + (1/2)O2(g) = H2O(l) , DrH m y, 4 = 285.8 kJ·mol-1 。习题6求下列反应在393 K 的反应的DrHm y (393 K) :C2H5OH(g) + HCl(g) = C2H5Cl(g) + H2O(g) 已知: 物质Df Hm y (298 K) / kJ·mol-1Cp, m / J·K-1·mol-1 C2H5Cl(g) 105.013.07 +188.5×10-3(T / K) H2O(g) 241.8430.00 +10.71×10-3(T / K)C2H5OH(g)235.319.07 +212.7×10-3(T / K)HCl(g)92.3126.53 +4.62×10-3(T / K)习题7已知反应CH3COOH(l)+C2H5OH(l)= CH3COOC2H5(l)+H2O(l)DrH m y (298.15K)=-1CH3COOH(l)的DcH m y (298.15K)= -1C2H5OH(l)的DcH m y (298.15K)= -1366kJ.mol-1CO2(g)的DfH m y (298.15K)= -1H2O(l)的DfHmQ(298.15K)= -1求算fH m y (CH3COOC2H5,l,298.15K)=?热力学第一定律课后习题答案一、是非题1. ´ 2 Ö 3. ´ 4 ´ 5Ö二、选择题1.(D) 2.(A) 3.(C) 4.(C) 5.(B) 6.(D) 7(B) 三、计算题习题1题解 体积功的计算公式 W = psudV ( 1 ) W = 0 (psu=0) ( 2 ) W = psuDV = psunRT (1/p1 1/p2)= 0.1 MPa×10 mol×8.314 J·mol-1·K-1×298.15 K×(1/0.1MPa1/1.0MPa) = 22.30 kJ ( 3 ) W = nRTln( V2 / V1 ) = nRT ln(p2 / p1) = 57.05 kJ导引由计算结果可知,虽然三个过程的初终态相同,但不同过程中的功不相等。这是因为不是状态函数,其值与过程有关。 习题2题解 n = 50 g / 28 g·mol-1 = 1.79 mol定温可逆压缩若反抗外压力0.1 Mpa,导引封闭系统由一个过程从始态(A)到达终态(B),再由另一个过程从终态(B)回到同一个始态(A),整个循环过程状态函数的改变量应为零;本题中,系统经历两个不同途径组成的循环过程由始态经过终态又回到同一个始态,功的加和不为零,说明功是过程量,其值与过程有关。习题3题解 ( 1 )dV = 0,W = 0。QV = DU = nCV,m ( T2T1 ) = 10mol×20 J·K-1·mol-1×(566283 ) K = 56.6 kJDH = nCp,m ( T2T1 )= 10mol×(208.314) J·K-1·mol-1×(566283)K = 80.129 kJ ( 2 )Q = 0,DU2 = DU1 = 56.6 kJ,DH2 = DH1 = 80.129 kJW = DU2 = 56.6 kJ ( 3 )dp = 0,DU3 = DU1 = 56.6 kJQp = DH = 80.129 kJ 导引热力学能U和焓H是状态函数,只要系统变化前后的始、终态一定,则不论经历何种过程,其DU和DH一定。本题中虽然始终态不明确,但理想气体的U和H都只是温度的函数,即对理想气体只要始终态温度一定,则不同过程的DU和DH相同。而W和Q不是状态函数,其值与过程有关,所以上述三个不同过程的W和Q分别不同。习题4 题解 设计变化途径如下:A(g) n = 2mol p1=5 0.663kPaT1 = 400K A(l)n = 2molp2= 101.325kPaT2 = 350KDU1=?DH1=?A(g) n = 2mol p2= 101.325kPaT2= 350KDU 2=?DH2=?DH1 = nCp,m( T2T1 ) = 2 mol ´ 30 J·K-1·mol-1 ´ ( 50 ) K =3.00 kJ DH2 = n ´ DVapHm =2 mol ´ 38 kJ·mol-1 =76 kJDH = DH1 + DH2 = (763.0 ) kJ =79 kJ DU = DU 1+DU 2= nCV,m( T2T1 )+DH2D( pV ) = nCV,m( T2T1 )+DH2+ nRT 2» 2 mol ´ (30 8.314)J·K-1·mol-1 ´ ( 350400 ) K76 ´103J +2 mol ´8.314J·K-1·mol-1 ´ 350 K=72.35 kJ 或DU = DHD( pV ) » DH(pVg,1 )= DH + nRT1 =79 kJ + 2 ´ 8.314 ´ 400 ´ 10-3 kJ=72.35 kJ 导引本题的变化过程既包括pVT变化又包括相变化,两种变化过程交织在一起,难以求出变化过程的DU和DH。为此将该变化过程分解为两步,一步为单纯的pVT变化,一步为单纯的定温定压下的可逆相变化,从而利用状态函数的改变量与过程无关的特性,求得DU = DU 1(pVT变化)+DU 2(相变化);DH = DH 1(pVT变化)+DH 2(相变化)。习题5 题解 (3)式×2(4)式×3 (1)式 (2)式 得2H2(g) 2C(石墨)C2H4(g) DfH m y = 2DrH m y,33DrH m y,4DrH m y,1DrH m y,2 = 52.6 kJ·mol-1; (1)式(2)式 (4)式 得 C2H4(g) 3O2 (g)2CO2 2H2O(l)DrH m y = DrH m y,1DrH m y,2DrH m y,4 = 1 411.2 kJ·mol-1;导引 本题为利用盖斯定律,即方程式的线性组合,求得化学反应的标准摩尔反应焓。 习题6题解 Dr Hm y (298K) = Df Hm y (C2H5OH , g , 298K) + 4 Df Hm y (HCl , g , 298K) + Df Hm y (C2H5Cl , g , 298K) + Df Hm y (H2O , g , 298K)= 19.23 kJ·mol-1DrH m y (393 K) = DrH (298K) + BCp, m(B) =2.53 J·K-1·mol-118.09×10-3 J·K-1·mol-1(T/K) 则DrH m y (393 K) = 19.23 kJ ·mol-1 +2.53 J·K-1·mol-1 18.09×10-3 J·K-1·mol-1(T/K)dT = 20.06 kJ·mol-1 导引本题为已知某一温度时参与反应各物质的DfH m y(或DcH m y),利用基希霍夫公式求算任意温度下化学反应的DrH m y。但需注意变温区间内参与反应各物质无相变化,当伴随有相变化时,还需把相变焓考虑进去。习题7题解 先由给定的反应及 CH3COOH(l),C2H5OH(l)的标准摩尔燃烧焓求出CH3COOC2H5(l)的标准摩尔燃烧焓rH m y (CH3COOC2H5,l,298.15K),即cH m y (CH3COOC2H5,l,298.15K)=DcH m y (CH3COOH,l,298.15K) +DcH m y (C2H5OH,l,298.15K) -DrH m y (298.15K)=874.54 kJ.mol-11366.91 kJ.mol-1 +9.20 kJ.mol-1=2232.22 kJ.mol-1即 CH3COOC2H5(l)+5O2=4CO2(g)+4H2O(l) DrH m y (298.15K)=2232.22 kJ.mol-1再由该反应求得 DfH m y (CH3COOC2H5,l,298.15K) : DrH m y (298.15K)=4DfH m y (CO2, g, 298.15K)+4 DfH m y (H2O,l,298.15K) DfH m y (CH3COOC2H5,l,298.15K)得 DfH m y (CH3COOC2H5,l,298.15K) = 4DfH m y (CO2,298.15K)+4 DfH m y (H2O,l,298.15K) DrH m y (298.15K)=4×(393.51)+4×(285.91) (2232.22) kJ.mol-1=-1 导引注意掌握物质的DcH m y、DfH m y的定义,并能利用DcH m y及DfH m y求取反应的DrH m y。