欢迎来到淘文阁 - 分享文档赚钱的网站! | 帮助中心 好文档才是您的得力助手!
淘文阁 - 分享文档赚钱的网站
全部分类
  • 研究报告>
  • 管理文献>
  • 标准材料>
  • 技术资料>
  • 教育专区>
  • 应用文书>
  • 生活休闲>
  • 考试试题>
  • pptx模板>
  • 工商注册>
  • 期刊短文>
  • 图片设计>
  • ImageVerifierCode 换一换

    小学奥数知识点(30个)(15页).doc

    • 资源ID:37153398       资源大小:142KB        全文页数:15页
    • 资源格式: DOC        下载积分:15金币
    快捷下载 游客一键下载
    会员登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录   QQ登录  
    二维码
    微信扫一扫登录
    下载资源需要15金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    小学奥数知识点(30个)(15页).doc

    -小学奥数知识点(30个)-第 15 页小学奥数知识点(30个)1、和差倍问题和差问题 和倍问题 差倍问题已知条件 几个数的和与差 几个数的和与倍数 几个数的差与倍数公式适用范围 已知两个数的和,差,倍数关系公式:(和-差)÷2=较小数 较小数+差=较大数 和-较小数=较大数(和+差)÷2=较大数 较大数-差=较小数 和-较大数=较小数和÷(倍数+1)=小数小数×倍数=大数 和-小数=大数 差÷(倍数-1)=小数 小数×倍数=大数小数+差=大数关键问题 求出同一条件下的: 和与差 和与倍数 差与倍数2、年龄问题的三个基本特征:两个人的年龄差是不变的;两个人的年龄是同时增加或者同时减少的;两个人的年龄的倍数是发生变化的; 3、归一问题的基本特点:问题中有一个不变的量,一般是那个“单一量”,题目一般用“照这样的速度”等词语来表示。关键问题:根据题目中的条件确定并求出单一量;4、植树问题基本类型 在直线或者不封闭的曲线上植树,两端都植树 在直线或者不封闭的曲线上植树,两端都不植树 在直线或者不封闭的曲线上植树,只有一端植树 封闭曲线上植树基本公式 棵数=段数+1棵距×段数=总长 棵数=段数-1棵距×段数=总长 棵数=段数棵距×段数=总长关键问题 确定所属类型,从而确定棵数与段数的关系5、鸡兔同笼问题基本概念:鸡兔同笼问题又称为置换问题、假设问题,就是把假设错的那部分置换出来;基本思路:假设,即假设某种现象存在(甲和乙一样或者乙和甲一样):假设后,发生了和题目条件不同的差,找出这个差是多少;每个事物造成的差是固定的,从而找出出现这个差的原因;再根据这两个差作适当的调整,消去出现的差。基本公式:把所有鸡假设成兔子:鸡数=(兔脚数×总头数-总脚数)÷(兔脚数-鸡脚数)把所有兔子假设成鸡:兔数=(总脚数一鸡脚数×总头数)÷(兔脚数一鸡脚数)关键问题:找出总量的差与单位量的差。6、盈亏问题基本概念:一定量的对象,按照某种标准分组,产生一种结果:按照另一种标准分组,又产生一种结果,由于分组的标准不同,造成结果的差异,由它们的关系求对象分组的组数或对象的总量.基本思路:先将两种分配方案进行比较,分析由于标准的差异造成结果的变化,根据这个关系求出参加分配的总份数,然后根据题意求出对象的总量.基本题型:一次有余数,另一次不足;基本公式:总份数=(余数+不足数)÷两次每份数的差当两次都有余数;基本公式:总份数=(较大余数一较小余数)÷两次每份数的差当两次都不足;基本公式:总份数=(较大不足数一较小不足数)÷两次每份数的差基本特点:对象总量和总的组数是不变的。关键问题:确定对象总量和总的组数。 7、牛吃草问题基本思路:假设每头牛吃草的速度为“1”份,根据两次不同的吃法,求出其中的总草量的差;再找出造成这种差异的原因,即可确定草的生长速度和总草量。基本特点:原草量和新草生长速度是不变的;关键问题:确定两个不变的量。基本公式:生长量=(较长时间×长时间牛头数-较短时间×短时间牛头数)÷(长时间-短时间);总草量=较长时间×长时间牛头数-较长时间×生长量;8、周期循环与数表规律周期现象:事物在运动变化的过程中,某些特征有规律循环出现。周期:我们把连续两次出现所经过的时间叫周期。关键问题:确定循环周期。闰 年:一年有366天;年份能被4整除;如果年份能被100整除,则年份必须能被400整除;平 年:一年有365天。年份不能被4整除;如果年份能被100整除,但不能被400整除;9、平均数基本公式:平均数=总数量÷总份数总数量=平均数×总份数总份数=总数量÷平均数平均数=基准数+每一个数与基准数差的和÷总份数基本算法:求出总数量以及总份数,利用基本公式进行计算.基准数法:根据给出的数之间的关系,确定一个基准数;一般选与所有数比较接近的数或者中间数为基准数;以基准数为标准,求所有给出数与基准数的差;再求出所有差的和;再求出这些差的平均数;最后求这个差的平均数和基准数的和,就是所求的平均数,具体关系见基本公式。10、抽屉原理抽屉原则一:如果把(n+1)个物体放在n个抽屉里,那么必有一个抽屉中至少放有2个物体。例:把4个物体放在3个抽屉里,也就是把4分解成三个整数的和,那么就有以下四种情况:4=4+0+0 4=3+1+0 4=2+2+0 4=2+1+1观察上面四种放物体的方式,我们会发现一个共同特点:总有那么一个抽屉里有2个或多于2个物体,也就是说必有一个抽屉中至少放有2个物体。抽屉原则二:如果把n个物体放在m个抽屉里,其中n>m,那么必有一个抽屉至少有:k=n/m +1个物体:当n不能被m整除时。k=n/m个物体:当n能被m整除时。理解知识点:X表示不超过X的最大整数。例4.351=4;0.321=0;2.9999=2;关键问题:构造物体和抽屉。也就是找到代表物体和抽屉的量,而后依据抽屉原则进行运算。11.定义新运算基本概念:定义一种新的运算符号,这个新的运算符号包含有多种基本(混合)运算。基本思路:严格按照新定义的运算规则,把已知的数代入,转化为加减乘除的运算,然后按照基本运算过程、规律进行运算。关键问题:正确理解定义的运算符号的意义。注意事项:新的运算不一定符合运算规律,特别注意运算顺序。每个新定义的运算符号只能在本题中使用。12.数列求和等差数列:在一列数中,任意相邻两个数的差是一定的,这样的一列数,就叫做等差数列。基本概念:首项:等差数列的第一个数,一般用a1表示;项数:等差数列的所有数的个数,一般用n表示;公差:数列中任意相邻两个数的差,一般用d表示;通项:表示数列中每一个数的公式,一般用an表示;数列的和:这一数列全部数字的和,一般用Sn表示.基本思路:等差数列中涉及五个量:a1 ,an, d, n,sn,通项公式中涉及四个量,如果己知其中三个,就可求出第四个;求和公式中涉及四个量,如果己知其中三个,就可以求这第四个。基本公式:通项公式:an = a1+(n-1)d;通项=首项+(项数一1) ×公差;数列和公式:sn,= (a1+ an)×n÷2;数列和=(首项+末项)×项数÷2;项数公式:n= (an+ a1)÷d+1;项数=(末项-首项)÷公差+1;公差公式:d =(an-a1)÷(n-1);公差=(末项-首项)÷(项数-1);关键问题:确定已知量和未知量,确定使用的公式;13.二进制及其应用十进制:用09十个数字表示,逢10进1;不同数位上的数字表示不同的含义,十位上的2表示20,百位上的2表示200。所以234=200+30+4=2×102+3×10+4。=An×10n-1+An-1×10n-2+An-2×10n-3+An-3×10n-4+An-4×10n-5+An-6×10n-7+A3×102+A2×101+A1×100注意:N0=1;N1=N(其中N是任意自然数)二进制:用01两个数字表示,逢2进1;不同数位上的数字表示不同的含义。(2)= An×2n-1+An-1×2n-2+An-2×2n-3+An-3×2n-4+An-4×2n-5+An-6×2n-7+A3×22+A2×21+A1×20注意:An不是0就是1。十进制化成二进制:根据二进制满2进1的特点,用2连续去除这个数,直到商为0,然后把每次所得的余数按自下而上依次写出即可。先找出不大于该数的2的n次方,再求它们的差,再找不大于这个差的2的n次方,依此方法一直找到差为0,按照二进制展开式特点即可写出。14.加法乘法原理和几何计数加法原理:如果完成一件任务有n类方法,在第一类方法中有m1种不同方法,在第二类方法中有m2种不同方法,在第n类方法中有mn种不同方法,那么完成这件任务共有:m1+ m2. +mn种不同的方法。关键问题:确定工作的分类方法。基本特征:每一种方法都可完成任务。乘法原理:如果完成一件任务需要分成n个步骤进行,做第1步有m1种方法,不管第1步用哪一种方法,第2步总有m2种方法不管前面n-1步用哪种方法,第n步总有mn种方法,那么完成这件任务共有:m1×m2. ×mn种不同的方法。关键问题:确定工作的完成步骤。基本特征:每一步只能完成任务的一部分。直线:一点在直线或空间沿一定方向或相反方向运动,形成的轨迹。直线特点:没有端点,没有长度。线段:直线上任意两点间的距离。这两点叫端点。线段特点:有两个端点,有长度。射线:把直线的一端无限延长。射线特点:只有一个端点;没有长度。数线段规律:总数=1+2+3+(点数一1);数角规律=1+2+3+(射线数一1);数长方形规律:个数=长的线段数×宽的线段数:数长方形规律:个数=1×1+2×2+3×3+行数×列数15.质数与合数质数:一个数除了1和它本身之外,没有别的约数,这个数叫做质数,也叫做素数。合数:一个数除了1和它本身之外,还有别的约数,这个数叫做合数。质因数:如果某个质数是某个数的约数,那么这个质数叫做这个数的质因数。分解质因数:把一个数用质数相乘的形式表示出来,叫做分解质因数。通常用短除法分解质因数。任何一个合数分解质因数的结果是唯一的。分解质因数的标准表示形式:N=,其中a1、a2、a3an都是合数N的质因数,且a1求约数个数的公式:P=(r1+1)×(r2+1)×(r3+1)××(rn+1)互质数:如果两个数的最大公约数是1,这两个数叫做互质数。16.约数与倍数约数和倍数:若整数a能够被b整除,a叫做b的倍数,b就叫做a的约数。公约数:几个数公有的约数,叫做这几个数的公约数;其中最大的一个,叫做这几个数的最大公约数。最大公约数的性质:1、 几个数都除以它们的最大公约数,所得的几个商是互质数。2、 几个数的最大公约数都是这几个数的约数。3、 几个数的公约数,都是这几个数的最大公约数的约数。4、 几个数都乘以一个自然数m,所得的积的最大公约数等于这几个数的最大公约数乘以m。例如:12的约数有1、2、3、4、6、12;18的约数有:1、2、3、6、9、18;那么12和18的公约数有:1、2、3、6;那么12和18最大的公约数是:6,记作(12,18)=6;求最大公约数基本方法:1、分解质因数法:先分解质因数,然后把相同的因数连乘起来。2、短除法:先找公有的约数,然后相乘。3、辗转相除法:每一次都用除数和余数相除,能够整除的那个余数,就是所求的最大公约数。公倍数:几个数公有的倍数,叫做这几个数的公倍数;其中最小的一个,叫做这几个数的最小公倍数。12的倍数有:12、24、36、48;18的倍数有:18、36、54、72;那么12和18的公倍数有:36、72、108;那么12和18最小的公倍数是36,记作12,18=36;最小公倍数的性质:1、两个数的任意公倍数都是它们最小公倍数的倍数。2、两个数最大公约数与最小公倍数的乘积等于这两个数的乘积。求最小公倍数基本方法:1、短除法求最小公倍数;2、分解质因数的方法17.数的整除一、基本概念和符号:1、整除:如果一个整数a,除以一个自然数b,得到一个整数商c,而且没有余数,那么叫做a能被b整除或b能整除a,记作b|a。2、常用符号:整除符号“|”,不能整除符号“”;因为符号“”,所以的符号“”;二、整除判断方法:1. 能被2、5整除:末位上的数字能被2、5整除。2. 能被4、25整除:末两位的数字所组成的数能被4、25整除。3. 能被8、125整除:末三位的数字所组成的数能被8、125整除。4. 能被3、9整除:各个数位上数字的和能被3、9整除。5. 能被7整除:末三位上数字所组成的数与末三位以前的数字所组成数之差能被7整除。逐次去掉最后一位数字并减去末位数字的2倍后能被7整除。6. 能被11整除:末三位上数字所组成的数与末三位以前的数字所组成的数之差能被11整除。奇数位上的数字和与偶数位数的数字和的差能被11整除。逐次去掉最后一位数字并减去末位数字后能被11整除。7. 能被13整除:末三位上数字所组成的数与末三位以前的数字所组成的数之差能被13整除。逐次去掉最后一位数字并减去末位数字的9倍后能被13整除。三、整除的性质:1. 如果a、b能被c整除,那么(a+b)与(a-b)也能被c整除。2. 如果a能被b整除,c是整数,那么a乘以c也能被b整除。3. 如果a能被b整除,b又能被c整除,那么a也能被c整除。4. 如果a能被b、c整除,那么a也能被b和c的最小公倍数整除。18.余数及其应用基本概念:对任意自然数a、b、q、r,如果使得a÷b=qr,且0余数的性质:余数小于除数。若a、b除以c的余数相同,则c|a-b或c|b-a。a与b的和除以c的余数等于a除以c的余数加上b除以c的余数的和除以c的余数。a与b的积除以c的余数等于a除以c的余数与b除以c的余数的积除以c的余数。 19.余数、同余与周期一、同余的定义:若两个整数a、b除以m的余数相同,则称a、b对于模m同余。已知三个整数a、b、m,如果m|a-b,就称a、b对于模m同余,记作ab(mod m),读作a同余于b模m。二、同余的性质:自身性:aa(mod m);对称性:若ab(mod m),则ba(mod m);传递性:若ab(mod m),bc(mod m),则a c(mod m);和差性:若ab(mod m),cd(mod m),则a+cb+d(mod m),a-cb-d(mod m);相乘性:若a b(mod m),cd(mod m),则a×c b×d(mod m);乘方性:若ab(mod m),则anbn(mod m);同倍性:若a b(mod m),整数c,则a×c b×c(mod m×c);三、关于乘方的预备知识:若A=a×b,则MA=Ma×b=(Ma)b若B=c+d则MB=Mc+d=Mc×Md四、被3、9、11除后的余数特征:一个自然数M,n表示M的各个数位上数字的和,则Mn(mod 9)或(mod 3);一个自然数M,X表示M的各个奇数位上数字的和,Y表示M的各个偶数数位上数字的和,则MY-X或M11-(X-Y)(mod 11);五、费尔马小定理:如果p是质数(素数),a是自然数,且a不能被p整除,则ap-11(mod p)。 20.分数与百分数的应用基本概念与性质:分数:把单位“1”平均分成几份,表示这样的一份或几份的数。分数的性质:分数的分子和分母同时乘以或除以相同的数(0除外),分数的大小不变。分数单位:把单位“1”平均分成几份,表示这样一份的数。百分数:表示一个数是另一个数百分之几的数。常用方法:逆向思维方法:从题目提供条件的反方向(或结果)进行思考。对应思维方法:找出题目中具体的量与它所占的率的直接对应关系。转化思维方法:把一类应用题转化成另一类应用题进行解答。最常见的是转换成比例和转换成倍数关系;把不同的标准(在分数中一般指的是一倍量)下的分率转化成同一条件下的分率。常见的处理方法是确定不同的标准为一倍量。假设思维方法:为了解题的方便,可以把题目中不相等的量假设成相等或者假设某种情况成立,计算出相应的结果,然后再进行调整,求出最后结果。量不变思维方法:在变化的各个量当中,总有一个量是不变的,不论其他量如何变化,而这个量是始终固定不变的。有以下三种情况:A、分量发生变化,总量不变。B、总量发生变化,但其中有的分量不变。C、总量和分量都发生变化,但分量之间的差量不变化。替换思维方法:用一种量代替另一种量,从而使数量关系单一化、量率关系明朗化。同倍率法:总量和分量之间按照同分率变化的规律进行处理。浓度配比法:一般应用于总量和分量都发生变化的状况。21.分数大小的比较基本方法:通分分子法:使所有分数的分子相同,根据同分子分数大小和分母的关系比较。通分分母法:使所有分数的分母相同,根据同分母分数大小和分子的关系比较。基准数法:确定一个标准,使所有的分数都和它进行比较。分子和分母大小比较法:当分子和分母的差一定时,分子或分母越大的分数值越大。倍率比较法:当比较两个分子或分母同时变化时分数的大小,除了运用以上方法外,可以用同倍率的变化关系比较分数的大小。(具体运用见同倍率变化规律)转化比较方法:把所有分数转化成小数(求出分数的值)后进行比较。倍数比较法:用一个数除以另一个数,结果得数和1进行比较。大小比较法:用一个分数减去另一个分数,得出的数和0比较。倒数比较法:利用倒数比较大小,然后确定原数的大小。基准数比较法:确定一个基准数,每一个数与基准数比较。 22.分数拆分一、 将一个分数单位分解成两个分数之和的公式:=+(d为自然数); 23.完全平方数完全平方数特征:1. 末位数字只能是:0、1、4、5、6、9;反之不成立。2. 除以3余0或余1;反之不成立。3. 除以4余0或余1;反之不成立。4. 约数个数为奇数;反之成立。5. 奇数的平方的十位数字为偶数;反之不成立。6. 奇数平方个位数字是奇数;偶数平方个位数字是偶数。7. 两个相临整数的平方之间不可能再有平方数。平方差公式:X2-Y2=(X-Y)(X+Y)完全平方和公式:(X+Y)2=X2+2XY+Y2完全平方差公式:(X-Y)2=X2-2XY+Y2 24.比和比例比:两个数相除又叫两个数的比。比号前面的数叫比的前项,比号后面的数叫比的后项。比值:比的前项除以后项的商,叫做比值。比的性质:比的前项和后项同时乘以或除以相同的数(零除外),比值不变。比例:表示两个比相等的式子叫做比例。a:b=c:d或比例的性质:两个外项积等于两个内项积(交叉相乘),ad=bc。正比例:若A扩大或缩小几倍,B也扩大或缩小几倍(AB的商不变时),则A与B成正比。反比例:若A扩大或缩小几倍,B也缩小或扩大几倍(AB的积不变时),则A与B成反比。比例尺:图上距离与实际距离的比叫做比例尺。按比例分配:把几个数按一定比例分成几份,叫按比例分配。 25.综合行程基本概念:行程问题是研究物体运动的,它研究的是物体速度、时间、路程三者之间的关系.基本公式:路程=速度×时间;路程÷时间=速度;路程÷速度=时间关键问题:确定运动过程中的位置和方向。相遇问题:速度和×相遇时间=相遇路程(请写出其他公式)追及问题:追及时间=路程差÷速度差(写出其他公式)流水问题:顺水行程=(船速+水速)×顺水时间逆水行程=(船速-水速)×逆水时间顺水速度=船速+水速逆水速度=船速-水速静水速度=(顺水速度+逆水速度)÷2水 速=(顺水速度-逆水速度)÷2流水问题:关键是确定物体所运动的速度,参照以上公式。过桥问题:关键是确定物体所运动的路程,参照以上公式。主要方法:画线段图法基本题型:已知路程(相遇路程、追及路程)、时间(相遇时间、追及时间)、速度(速度和、速度差)中任意两个量,求第三个量。26.工程问题基本公式:工作总量=工作效率×工作时间工作效率=工作总量÷工作时间工作时间=工作总量÷工作效率基本思路:假设工作总量为“1”(和总工作量无关);假设一个方便的数为工作总量(一般是它们完成工作总量所用时间的最小公倍数),利用上述三个基本关系,可以简单地表示出工作效率及工作时间.关键问题:确定工作量、工作时间、工作效率间的两两对应关系。经验简评:合久必分,分久必合。 27.逻辑推理基本方法简介:条件分析假设法:假设可能情况中的一种成立,然后按照这个假设去判断,如果有与题设条件矛盾的情况,说明该假设情况是不成立的,那么与他的相反情况是成立的。例如,假设a是偶数成立,在判断过程中出现了矛盾,那么a一定是奇数。条件分析列表法:当题设条件比较多,需要多次假设才能完成时,就需要进行列表来辅助分析。列表法就是把题设的条件全部表示在一个长方形表格中,表格的行、列分别表示不同的对象与情况,观察表格内的题设情况,运用逻辑规律进行判断。条件分析图表法:当两个对象之间只有两种关系时,就可用连线表示两个对象之间的关系,有连线则表示“是,有”等肯定的状态,没有连线则表示否定的状态。例如A和B两人之间有认识或不认识两种状态,有连线表示认识,没有表示不认识。逻辑计算:在推理的过程中除了要进行条件分析的推理之外,还要进行相应的计算,根据计算的结果为推理提供一个新的判断筛选条件。简单归纳与推理:根据题目提供的特征和数据,分析其中存在的规律和方法,并从特殊情况推广到一般情况,并递推出相关的关系式,从而得到问题的解决。28.几何面积基本思路:在一些面积的计算上,不能直接运用公式的情况下,一般需要对图形进行割补,平移、旋转、翻折、分解、变形、重叠等,使不规则的图形变为规则的图形进行计算;另外需要掌握和记忆一些常规的面积规律。常用方法:1. 连辅助线方法2. 利用等底等高的两个三角形面积相等。3. 大胆假设(有些点的设置题目中说的是任意点,解题时可把任意点设置在特殊位置上)。4. 利用特殊规律等腰直角三角形,已知任意一条边都可求出面积。(斜边的平方除以4等于等腰直角三角形的面积)梯形对角线连线后,两腰部分面积相等。圆的面积占外接正方形面积的78.5%。 29.立体图形名称 图形 特征 表面积 体积长方体:8个顶点;6个面;相对的面相等;12条棱;相对的棱相等; S=2(ab+ah+bh) V=abh=Sh正方体:8个顶点;6个面;所有面相等;12条棱;所有棱相等; S=6a2 V=a3圆柱体:上下两底是平行且相等的圆;侧面展开后是长方形; S=S侧+2S底;S侧=Ch V=Sh圆锥体:下底是圆;只有一个顶点;l:母线,顶点到底圆周上任意一点的距离; S=S侧+S底;S侧=rl V=Sh球体:圆心到圆周上任意一点的距离是球的半径。 S=4r2 V=r3 30.时钟问题快慢表问题基本思路:1、 按照行程问题中的思维方法解题;2、 不同的表当成速度不同的运动物体;3、 路程的单位是分格(表一周为60分格);4、 时间是标准表所经过的时间;合理利用行程问题中的比例关系;

    注意事项

    本文(小学奥数知识点(30个)(15页).doc)为本站会员(1595****071)主动上传,淘文阁 - 分享文档赚钱的网站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知淘文阁 - 分享文档赚钱的网站(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于淘文阁 - 版权申诉 - 用户使用规则 - 积分规则 - 联系我们

    本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

    工信部备案号:黑ICP备15003705号 © 2020-2023 www.taowenge.com 淘文阁 

    收起
    展开