欢迎来到淘文阁 - 分享文档赚钱的网站! | 帮助中心 好文档才是您的得力助手!
淘文阁 - 分享文档赚钱的网站
全部分类
  • 研究报告>
  • 管理文献>
  • 标准材料>
  • 技术资料>
  • 教育专区>
  • 应用文书>
  • 生活休闲>
  • 考试试题>
  • pptx模板>
  • 工商注册>
  • 期刊短文>
  • 图片设计>
  • ImageVerifierCode 换一换

    傅里叶变换的基本性质.ppt

    • 资源ID:3715803       资源大小:1.83MB        全文页数:45页
    • 资源格式: PPT        下载积分:10金币
    快捷下载 游客一键下载
    会员登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录   QQ登录  
    二维码
    微信扫一扫登录
    下载资源需要10金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    傅里叶变换的基本性质.ppt

    第七节傅里叶变换的基本性质,主要内容:,1.对称性质 2.线性性质 3.奇偶虚实性 4.尺度变换性质 5.时移特性,时域卷积定理 频域卷积定理,6.频移特性 7.时域积分性质 8.时域微分性质 9.频域微分性质 10.帕塞瓦尔定理,例1:,1.对称性,(互易对偶性),(时频对称性),例2:,?,例3,其中,a1,a2为常数,2.线性性,则:,3.奇偶虚实性,意义,(a)0<a<1 时域扩展,频带压缩。,(b) a1 时域压缩,频域扩展a倍。,4.尺度变换特性,(展缩特性),例:,信号的持续时间与信号占有频带成反比,结论:,时域压缩,则频域展宽;时域展宽,则频域压缩。,时移加尺度变换:,5.时移特性,式中t0为任意实数,注意:,信号在时域中的时移,对应频谱函数在频域 中产生的附加相移,而幅度频谱保持不变。,书例3-2:,求下列所示三脉冲信号的频谱。,解:令f0(t)表示矩形单脉冲信号,由时移特性可得:,实偶信号的频谱为实偶,已知双Sa信号,试求其频谱。,令,(书P133),解:,.,由时移特性得到,从中可以得到幅度谱为,双Sa信号的波形和频谱如图(d) (e)所示。,6.频移特性,(调制定理),证明:,由傅立叶变换定义有,证明:,书例3-4,已知矩形调幅信号如图所示,其中G(t)为矩形脉冲,脉幅为E,脉宽为,试求其频谱。,解:G(t)矩形脉冲的频谱为:,根据频移特性:f(t)的频谱F(w)为,(书P133),书例3-5 : (书P134),注意“1”的作用,利用频移定理求余弦信号的频谱。,解一:,解二:,余弦信号及其频谱函数,注意:周期信号也存在傅里叶变换,7.时域积分特性,证明方法一:书P.135,证明方法二:,利用卷积定理,正向应用,逆向应用,应用:,时域积分性质应用举例:,解:,直接套用性质,用被积函数的傅氏变换来表示积分后的傅氏变换,正向应用,即:,解:,(书例3-7)用时域积分性质求y(t)的频谱,逆向应用,对所求函数先微分再表示成积分形式,例1:,易出错处:微分后再积分不一定等于原函数!,解:,(补充),例2:,代入上式得:,8.时域微分特性,证明:书P.134,正向应用,逆向应用,应用:,(有条件),时域微分性质应用举例:,正向应用:,例1:(补充),解:,用原函数的傅氏变换来表示微分后的傅氏变换,直接套用性质,直接套用性质,即:,例:,?,逆向应用:,即:用微分后的傅氏变换来表示原函数的傅氏变换,思考:,为什么结果错误?,例2(补充):,特别:,所有的时限信号都满足上述条件。,逆向应用条件:,解:,逆向应用,例3(补充),思考:,能否用时域微分性质求y(t)的频谱 ?,易出错处:逆向应用时域微分性质是有条件的,已知三角脉冲信号,求其频谱,例4(书例3-6),解一:用时域积分性质,注意:微积分关系式成立的条件,解法二:用时域微分性质,第一步:判断能否逆用,第二步:求出二阶导数的频谱F2(w).,第三步:逆向用时域微分性质求f(t)的频谱F (w) :,其幅频图,解法一:用时域积分性质,解法二:用时域微分性质,思考:,2、对分段线性的信号哪种是更普遍的方法?,1、本例两种方法中哪种更简单?,解法三 :应用时域卷积定理,至于微分几次要视实际情况来定,2、逆向应用两性质的思想是相同的:,1、正向应用时:,直接套用公式,没有要注意的问题,3、时域微分性质比时域积分性质方便,即微分后的傅氏变换易求,用它来表示原函数的傅氏变换,时域积分和时域微分两性质的比较:,证明 :略,思考:,9.频域微分特性,求单位斜变信号f(t)=tu(t)的频谱,补充例1:,解:,求信号f(t)=t的频谱,解:,注意“1”的作用,补充例2:,频域积分特性:,(用的少),10.帕塞瓦尔定理(Parserval定理),(补充),(能量守恒),(功率守恒),能量谱:,功率谱:,功率谱仅与幅度谱有关, 与相位谱无关。,能量谱仅与幅度谱有关, 与相位谱无关。,对能量有限信号:,

    注意事项

    本文(傅里叶变换的基本性质.ppt)为本站会员(小**)主动上传,淘文阁 - 分享文档赚钱的网站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知淘文阁 - 分享文档赚钱的网站(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于淘文阁 - 版权申诉 - 用户使用规则 - 积分规则 - 联系我们

    本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

    工信部备案号:黑ICP备15003705号 © 2020-2023 www.taowenge.com 淘文阁 

    收起
    展开