欢迎来到淘文阁 - 分享文档赚钱的网站! | 帮助中心 好文档才是您的得力助手!
淘文阁 - 分享文档赚钱的网站
全部分类
  • 研究报告>
  • 管理文献>
  • 标准材料>
  • 技术资料>
  • 教育专区>
  • 应用文书>
  • 生活休闲>
  • 考试试题>
  • pptx模板>
  • 工商注册>
  • 期刊短文>
  • 图片设计>
  • ImageVerifierCode 换一换

    二元函数的偏导数与全微分.ppt

    • 资源ID:3717741       资源大小:1.62MB        全文页数:32页
    • 资源格式: PPT        下载积分:10金币
    快捷下载 游客一键下载
    会员登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录   QQ登录  
    二维码
    微信扫一扫登录
    下载资源需要10金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    二元函数的偏导数与全微分.ppt

    ,5.2 二元函数的偏导数与全微分,一、偏导数 二、高阶偏导数 三、全微分 四、全微分在近似计算中的应用,5.2 二元函数的偏导数与全微分,一、偏导数,1、偏导数的定义,5.2 二元函数的偏导数与全微分,5.2 二元函数的偏导数与全微分,5.2 二元函数的偏导数与全微分,偏导数的概念可以推广到二元以上函数,如函数 在点 处,5.2 二元函数的偏导数与全微分,例1 求,解法1,解法2,在点(1 , 2)处的偏导数.,5.2 二元函数的偏导数与全微分,例2 设,证,例3 求,的偏导数 .,解,求证:,5.2 二元函数的偏导数与全微分,偏导数记号是一个,例4 已知理想气体的状态方程,求证:,证,说明:,(R 为常数) ,不能看作,分子与分母的商 !,此例表明,整体记号,5.2 二元函数的偏导数与全微分,2.偏导数的几何意义,如图,5.2 二元函数的偏导数与全微分,(1)几何意义:,5.2 二元函数的偏导数与全微分,(2)偏导数存在与连续的关系,?,但函数在该点处并不连续.,偏导数存在 连续.,一元函数中在某点可导 连续,,多元函数中在某点偏导数存在 连续,,则称它们是z = f (x , y),5.2 二元函数的偏导数与全微分,二、高阶偏导数,设 z = f (x , y)在域 D 内存在连续的偏导数,若这两个偏导数仍存在偏导数,,的二阶偏导数 .,按求导顺序不同, 有下列四个二阶偏导,数:,5.2 二元函数的偏导数与全微分,类似可以定义更高阶的偏导数.,例如, z = f (x , y)关于x 的三阶偏导数为,z = f (x , y)关于x的 n 1 阶偏导数 , 再关于y 的一阶,偏导数为,第二、三个偏导数称为混合偏导数.,二阶及二阶以上的偏导数统称为高阶偏导数.,5.2 二元函数的偏导数与全微分,解,5.2 二元函数的偏导数与全微分,例6 求函数,解,注意:此处,但这一结论并不总成立.,的二阶偏导数及,5.2 二元函数的偏导数与全微分,问题,例如, 对三元函数u = f (x , y , z) ,当三阶混合偏导数,在点 (x , y , z) 连续时, 有,5.2 二元函数的偏导数与全微分,证,5.2 二元函数的偏导数与全微分,例8 证明函数,满足,证,利用对称性,有,方程,5.2 二元函数的偏导数与全微分,三、全微分,全增量,5.2 二元函数的偏导数与全微分,定义2 如果函数 z = f ( x, y )在点( x , y ),可表示成,其中A , B不依赖于 x , y ,仅与 x , y 有关,,称为函数,在点 (x, y) 的全微分, 记作,若函数在域 D 内各点都可微,则称函数,f ( x, y )在点( x, y) 可微,,的全增量,则称此函数在D 内可微.,5.2 二元函数的偏导数与全微分,证,“可微”与“连续”的关系?,5.2 二元函数的偏导数与全微分,“可微”与“偏导数存在”的关系?,5.2 二元函数的偏导数与全微分,同样可证,证 由全增量公式,得到对x 的偏增量,因此有,5.2 二元函数的偏导数与全微分,反例: 函数,易知,但,注: 定理3 的逆定理不成立 .,偏导数存在函数 不一定可微 !,因此,函数在点 不可微 .,5.2 二元函数的偏导数与全微分,定理4 (可微的充分条件),若函数,的偏导数,则函数,在点,连续,,在该点可微 . 且,全微分的定义可推广到三元及三元以上函数,.,例如, 三元函数,的全微分为:,5.2 二元函数的偏导数与全微分,例9 计算函数,在点(2,1)处的全微分.,解,例10 计算函数,的全微分.,解,5.2 二元函数的偏导数与全微分,可知当,*四、全微分在数值计算中的应用,近似计算:,由全微分定义,较小时,及,有近似等式:,(可用于近似计算; 误差分析),(可用于近似计算),5.2 二元函数的偏导数与全微分,例11 计算,的近似值.,解 设,则,取,则,5.2 二元函数的偏导数与全微分,半径由 20cm 增大,解 已知,即受压后圆柱体体积减少了,例12 有一圆柱体受压后发生形变,到 20.05cm ,则,高度由100cm 减少到 99cm ,体积的近似改变量.,求此圆柱体,5.2 二元函数的偏导数与全微分,偏导数的定义,偏导数的计算、偏导数的几何意义,高阶偏导数,(偏增量比的极限),纯偏导,混合偏导,(相等的条件),内容小结,5.2 二元函数的偏导数与全微分,思考练习,则( ),(A),(C),为,曲线 在点,的切向量,为,5.2 二元函数的偏导数与全微分,思考练习,(D),曲线 在点,的切向量,为,答案(C),

    注意事项

    本文(二元函数的偏导数与全微分.ppt)为本站会员(小**)主动上传,淘文阁 - 分享文档赚钱的网站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知淘文阁 - 分享文档赚钱的网站(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于淘文阁 - 版权申诉 - 用户使用规则 - 积分规则 - 联系我们

    本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

    工信部备案号:黑ICP备15003705号 © 2020-2023 www.taowenge.com 淘文阁 

    收起
    展开