欢迎来到淘文阁 - 分享文档赚钱的网站! | 帮助中心 好文档才是您的得力助手!
淘文阁 - 分享文档赚钱的网站
全部分类
  • 研究报告>
  • 管理文献>
  • 标准材料>
  • 技术资料>
  • 教育专区>
  • 应用文书>
  • 生活休闲>
  • 考试试题>
  • pptx模板>
  • 工商注册>
  • 期刊短文>
  • 图片设计>
  • ImageVerifierCode 换一换

    1423多项式乘多项式.ppt

    • 资源ID:37191130       资源大小:750.50KB        全文页数:32页
    • 资源格式: PPT        下载积分:15金币
    快捷下载 游客一键下载
    会员登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录   QQ登录  
    二维码
    微信扫一扫登录
    下载资源需要15金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    1423多项式乘多项式.ppt

    )3)(8(2aba2322233x y (x1)(x1) 3x yba324326yx计算:计算:1.1.单项式乘以单项式单项式乘以单项式2.2.单项式乘以多项式单项式乘以多项式 (a+b)(m+n) ambnanbmmnm+n a+bab ambnanbmam + an + bm + bn=+1234(a+b)(m+n)=am1234+an+bm+bn 多项式与多项式相乘,先用一个多项式的每一项分别分别乘以另一个多项式的每一项,再把所得的积相加。 1234(a+b)(m+n)=am1234+an+bm+bnamanbmbn()ab()abXa Xb X()mna()mnb ()mn计算:)3)(2(xx(1)(2)) 12)(13(xx1234(a+b)(m+n)=am1234+an+bm+bn直接利用:多项式乘以多项式的法则(1)(2)(3)( 3) 22 ( 3)xxx x xx 参考解答:参考解答:2326xxx2(2)(31)(21)3231216321xxxxxxxxx 261xx26xx计算:)7)(3(yxyx(1))23)(52(yxyx(2))(22yxyxyx(3)感悟新知22(1)(3 )(7 )73377321xy xyx xxyy xyyxxyxyy参考解答:参考解答:22421xxyy(1))7)(3(yxyx解:22(2)(25 )(32 )232 ( 2 )535 ( 2 )641510 xyxyxxxyyxyyxxyxyy参考解答:参考解答:2261110 xxyy(2))23)(52(yxyx222222322223(3)()()x yxxy yx xx xy xyy xy xy y yxx y xyx y xyy 参考解答:参考解答:33xy(3))(22yxyxyx计算:)7)(5(xx(1)(7 )(5 )xy xy(2))32)(32(nmnm(3))32)(32(baba(4)22222229124)4(94)3(352)2(352)1 (babanmyxyxxx参考解答:参考解答: 1 1、漏乘、漏乘2 2、符号问题、符号问题 3 3、最后结果应化成最简形式。、最后结果应化成最简形式。2)1()2)(32(xxx判别下列解法是否正确,若错请说出理由。解:原式) 1)(1(6422xxxx) 12(64222xxxx1264222xxxx522xx3x2)1()2)(32(xxx判别下列解法是否正确,若错请说出理由。解:原式)1(6342222xxxx167222xxx772xx(1)(1)xx2(21)xx2)1()2)(32(xxx判别下列解法是否正确,若错请说出理由。解:原式) 1)(1(63422xxxxx1267222xxxx792xx2(21)xx221xx255xx实际应用实际应用 先化简,再求值先化简,再求值:2223929yyyyy2y215981yy 215298122原式时当,y33222261892781:yyyyyy原式解33222269182781yyyyyy2215298139 其中填空:_)3)(2(2xxxx_)3)(2(2xxxx_)3)(2(2xxxx_)3)(2(2xxxx_)(2xxbxax观察上面四个等式,你能发现什么规律?观察上面四个等式,你能发现什么规律?)(baab你能根据这个规律解决下面的问题吗?你能根据这个规律解决下面的问题吗?5 61 (-6)(-1) (-6)(-5) 62(7)(5)_xxxx口答:2( )( 35)【例【例1 1】计算计算 : :(1)(1)(3(3x x+1)(+1)(x x-2); (2)(-2); (2)(x x-8-8y y)()(x x- -y y).).【解析【解析】(1)(3x+1)(x-2)(1)(3x+1)(x-2) = (3x) = (3x)x+(3x)x+(3x)(-2)+1(-2)+1x+1x+1(-2)(-2) = 3x = 3x2 2-6x+x-2-6x+x-2 =3x =3x2 2-5x-2.-5x-2.(2)(2)(x-8y)(x-y)(x-8y)(x-y) = x = x2 2-xy-8xy+8y-xy-8xy+8y2 2 = x = x2 2-9xy +8y-9xy +8y2 2. .注意:注意:1.1.不要漏乘不要漏乘 2.2.注意符号注意符号 3.3.结果化为最简形式结果化为最简形式【例题【例题】(3)(x+y)(2x(3)(x+y)(2xy)(3x+2y).y)(3x+2y).(1)(1)(x+y)(x+y)2 2. (2) (x+y)(x. (2) (x+y)(x2 2y+yy+y2 2).).【例例2 2】计算计算(3 3)原式)原式= =(2x2x2 2-xy+2xy-y-xy+2xy-y2 2)(3x+2y )(3x+2y ) =(2x =(2x2 2+xy-y+xy-y2 2)(3x+2y) )(3x+2y) =6x =6x3 3+4x+4x2 2y+3xy+3x2 2y+2xyy+2xy2 2-3xy-3xy2 2-2y-2y3 3 =6x =6x3 3 +7x+7x2 2y-xyy-xy2 2-2y-2y3 3 . . 【解析【解析】(1)1)原式原式= =(x+yx+y)()(x+yx+y) ) =x =x2 2+ xy+ xy+ xy+ xy+ y+ y2 2 =x =x2 2+ 2xy+ y+ 2xy+ y2 2. .(2 2)原式)原式=x=x3 3y+ xyy+ xy2 2+x+x2 2y y2 2+y+y3 3. .计算计算 (1) (2x+1)(x+3). (2) (m+2n)(m+3n).(1) (2x+1)(x+3). (2) (m+2n)(m+3n). (3) (a-1) (3) (a-1)2 2 . (4) (a+3b)(a3b ). (4) (a+3b)(a3b ).答案答案: : (1) 2x (1) 2x2 2+7x+3. (2) m+7x+3. (2) m2 2+5mn+6n+5mn+6n2 2. . (3) a (3) a2 2-2a+1. (4) a-2a+1. (4) a2 2-9b-9b2 2. .看谁做得又快又对看谁做得又快又对【跟踪训练【跟踪训练】 (x+2)(x+3) = (x+2)(x+3) = x x2 2 + 5x+6+ 5x+6; (x-4)(x+1) = (x-4)(x+1) = x x2 23x-43x-4; (y+4)(y-2) = (y+4)(y-2) = y y2 2 +2y-8+2y-8; (y-5)(y-3) = (y-5)(y-3) = y y2 2- 8y+15.- 8y+15.观察上述式子,你可以观察上述式子,你可以 得出一个什么规律吗?得出一个什么规律吗? (x+p)(x+q (x+p)(x+q) = x) = x2 2 + (p+q+ (p+q) x + p q ) x + p q 探究:探究:确定下列各式中确定下列各式中m m的值的值: :(口答)(口答)(1)(x+4)(x+9)= x(1)(x+4)(x+9)= x2 2 + m x + 36+ m x + 36(2)(x-2)(x-18)=x(2)(x-2)(x-18)=x2 2 + m x + 36 + m x + 36(3)(x+3)(x+p) =x(3)(x+3)(x+p) =x2 2+ m x + 36+ m x + 36(4)(x-6)(x-p)=x(4)(x-6)(x-p)=x2 2+ m x + 36+ m x + 36 (1) m =13 (1) m =13 (2) m = -20 (2) m = -20 (3) p =12, m=15 (3) p =12, m=15 (4) p= 6, m= -12 (4) p= 6, m= -12温馨提示温馨提示: :(1 1)利用下式)利用下式(x+p)(x+q(x+p)(x+q)=x=x2 2+(p+q)x+pq+(p+q)x+pq(2 2)注意符号)注意符号试一试试一试【规律方法【规律方法】注意:多项式与多项式相乘注意:多项式与多项式相乘. .1.1.必须做到不重复,不遗漏必须做到不重复,不遗漏. .2.2.确定积中每一项的符号确定积中每一项的符号. .3.3.结果应化为最简式即合并同类项结果应化为最简式即合并同类项. .(1(1) )一个多项式乘以一个多项式仍是多项式一个多项式乘以一个多项式仍是多项式. .( ) ) (2)(a-b)(a(2)(a-b)(a b-1b-1)=a)=ab-a-ab-a-a b b . . ( ) ( )(3(3) )已知已知ab0ab0,在边长为,在边长为a+ba+b的正方形内,挖去一个边的正方形内,挖去一个边长为长为a-ba-b的正方形,剩余部分的面积为的正方形,剩余部分的面积为4ab.4ab.( ) ) 1.1.判断:判断: 2 22A.A.21xy2xy (1)(1)xy2.2.(临沂(临沂中考)若中考)若,的值等于(的值等于( )2 22B.B.2 2C.C.2D.D.B B则代数式则代数式3 3(日照(日照中考)由中考)由m m(a+b+ca+b+c)=ma+mb+mc=ma+mb+mc,可得:,可得:(a+ba+b)()(a a2 2ab+bab+b2 2)=a=a3 3a a2 2b+abb+ab2 2+a+a2 2b babab2 2+b+b3 3=a=a3 3+b+b3 3,即(即(a+ba+b)()(a a2 2ab+bab+b2 2)=a=a3 3+b+b3 3 我们把等式我们把等式叫做多项式乘法的立方公式叫做多项式乘法的立方公式. .下列应用这个立方公式进行的变形不正确的是下列应用这个立方公式进行的变形不正确的是( )( )A.A.(x+4yx+4y)()(x x2 24xy+16y4xy+16y2 2)=x=x3 3+64y+64y3 3B.B.(2x+y2x+y)()(4x4x2 22xy+y2xy+y2 2)=8x=8x3 3+y+y3 3C.C.(a+1a+1)()(a a2 2a+1a+1)=a=a3 3+1+1D.xD.x3 3+27=+27=(x+3x+3)()(x x2 23x+93x+9)C C4.4.计算:计算: (3a(3a2)(a1)(a+1)(a+2); 2)(a1)(a+1)(a+2); 【解析【解析】(3a(3a2)(a2)(a1)1)(a+1)(a+2)(a+1)(a+2)是多项式的积与积的差,后两是多项式的积与积的差,后两个多项式乘积的展开式要用括号括起来个多项式乘积的展开式要用括号括起来. .结果为结果为:2a:2a2 2-8a.-8a.2c 2c a+ba+b c ca a- - b b5.5.如图如图, ,在长方形地中有在长方形地中有两条小路两条小路. .依据图中标注依据图中标注的数据的数据, ,计算绿地的面积计算绿地的面积? ?(abab)【解析【解析】(a+b)(a-b)-(a+b)c-2c(a-b)+2ca+b)(a-b)-(a+b)c-2c(a-b)+2c2 2 =a=a2 2-b-b2 2+bc-3ac+2c+bc-3ac+2c2 26.6.求长方体的体积?求长方体的体积?(ab) (ab) a+2ba+2ba+ba+b长方体长方体a-ba-b【解析【解析】(a+2b)(a-b)(a+b)=aa+2b)(a-b)(a+b)=a3 3-2b-2b3 3+2a+2a2 2b-abb-ab2 2

    注意事项

    本文(1423多项式乘多项式.ppt)为本站会员(asd****56)主动上传,淘文阁 - 分享文档赚钱的网站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知淘文阁 - 分享文档赚钱的网站(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于淘文阁 - 版权申诉 - 用户使用规则 - 积分规则 - 联系我们

    本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

    工信部备案号:黑ICP备15003705号 © 2020-2023 www.taowenge.com 淘文阁 

    收起
    展开