2022年《三角函数及解直角三角形》知识点总结 .docx
精品_精品资料_三角函数及解直角三角形学问点总结、本章学问结构框图:、本章学问点: 、正弦、余弦、正切、余切的概念在是三角形 中,°,()锐角的对边与斜边的比叫做的正弦,记作.即的对边斜边()锐角的邻边与斜边的比叫做的余弦,记作.即的邻边斜边()锐角的对边与邻边的比叫做的正切,记作.即的对边的邻边()锐角的邻边与对边的比叫做的余切,记作.即的邻边的对边锐角的正弦、余弦、正切、余切都叫做的三角函数.留意:()正弦、余弦、正切、余切都是在直角三角形中给出的,要防止应用时对任意的三角形任凭套用定义.() 不是与的 乘积,是三角形函数记号,是一个整体. “ ”表示一个比值,其他三个三角函数记号也是一样的.()锐角三角函数值与三角形三边长短无关,只与锐角的大小有关.可编辑资料 - - - 欢迎下载精品_精品资料_、同角的三角函数之间的关系()平方关系: 2 2 ,为锐角,即同一锐角的正弦和余弦的平方和等于.()倒数关系: · ,为锐角,即同一锐角的正切与余切的积为, 互为倒数.()商的关系: , ,为锐角,即同一锐角的正弦与余弦的商等于正切,同一锐角的余弦与正弦的商等于余切.留意:()这些关系式都是恒等式,正反均可运用,同时仍要留意它们的变形,如: 2, 2.() 2 是( )2的简写,读作“ ”的平方.不能将 2 写成 2,前者是 的正弦值的平方,后者表示 2的正弦值.、特别角的三角函数值特别角有 °、°、°、°、°,它们的三角函数值如下表:°°°°°三角函数值 不存在 不存在留意:记忆特别角的三角函数值,可用下述方法:°、°、°、°、°的正弦值分别是、,二它们的余弦值分别是、. °、°、°的正切值分别是、,而它们的余切值分别是、. 、互为余角的三角函数之间的关系(诱导公式)如°,就(°), (°),可编辑资料 - - - 欢迎下载精品_精品资料_(°), (°).即任意锐角的正弦值等于它的余角的余弦值.任意锐角的余弦值等于它的余角的正弦值.任意锐角的正切值等于它的余角的余切值.任意锐角的余切值等于它的余角的正切值.、用运算器运算三角函数值用运算器求已知锐角的三角函数值和由三角函数值求对应的锐角是必需把握的.、三角函数值的变换范畴及规律()当° °时, 、 随着的增大(或减小) 而增大(或减小), 、 随着的增大(或减小)而减小(或增大) .() 当° °时, .、直角三角形的边角关系直角三角形的边角关系可以从以下几个方面加以归纳:()三边之间的关系: 2 22(勾股定理).()锐角之间的关系: °.()边角之间的关系: ,.、解直角三角形的概念及基本类型()概念:在直角三角形中,用除直角外的已知元素,求出全部未知元素的过程,叫做解直角三角形.留意:在直角三角形中,除直角外,一共有个元素,即条边和个锐角.()解直角三角形的两种基本类型已知两边长.已知一锐角和一边.留意:已知两锐角不能解直角三角形.、解直角三角形的方法“有斜(斜边)用弦(正弦、余弦) ,无斜用切(正切、余切,宁乘毋除,取原避中) ,”这几句话的意思是:当已知或求解中有斜边时,就用正弦或余弦,无斜边时,就用正切或余切.当所求的元素既可用乘法又可用除法时,就用乘法,不用除法.既可以由已知数据又可由中间数据求解时,就用已知数据,尽量防止用中间数据.、解非直角三角形的方法对于非直角三角形,往往要通过作帮助线构造直角三角形来解,作帮助线的一般思路是:可编辑资料 - - - 欢迎下载精品_精品资料_()作垂线构成直角三角形.()利用图形本身的性质,如等腰三角形顶角平分线垂直于底边.、解直角三角形的实际应用的步骤()审题分析题意,懂得实际问题的意义,看懂题目给出的示意图或自己画出的示意图,找出要解的直角三角形.把实际问题中的数量关系,转移到直角三角形的各元素上,找出已知元素和未知元素.依据已知元素和未知元素之间的关系,挑选合适的三角函数关系式.()解题留意精确度()答留意答的完整及注明单位、本章数学思想方法:数形结合思想:此部分内容常常用到数形结合思想,对于每一个题都可结合图形分析,会更清晰简捷.数与形相结合,是问题清晰,思路简捷有条理,是几何学问中最常用的思想方法之一,也是最应当坚持实施的方法.从特别到一般的归纳总结法:锐角三角函数中包含了特别角的三角函数值,对于三角函数之间的关系和转化,都可从特别角开头.转化思想:把直角三角形的线段比,转化为三角函数值或面积的比.数学的建模思想:解直角三角形的实际应用,即将实际问题“数学化”,构建直角三角形来解决问题.可编辑资料 - - - 欢迎下载