概率论基本公式(9页).doc
-概率论基本公式-第 9 页概率论与数理统计基本公式第一部分 概率论基本公式1、 2、对偶率:3、概率性率:4、古典概型5、条件概率例:有三个罐子,1号装有2红1黑共3个球,2号装有3红1黑4个球,3号装有2红2黑4个球,某人随机从其中一罐,再从该罐中任取一个球,(1)求取得红球的概率;(2)如果取得是红球,那么是从第一个罐中取出的概率为多少?6、独立事件(1)P(AB)=P(A)P(B),则称A、B独立。(2)伯努利概型如果随机试验只有两种可能结果:事件A发生或事件A不发生,则称为伯努利试验,即:P(A)=p, (0<p<1,p+q=1)相同条件独立重复n次,称之为n重伯努利试验,简称伯努利概型。伯努利定理: (k=0,1,2) 事件A首次发生概率为:例:设事件A在每一次试验中发生的概率为0.3,当A发生不少于3次时,指示灯发出信号,(1)进行5次重复独立试验,求指示灯发出信号的概率;(2)进行了7次重复独立试验,求指示灯发出信号的概率。第二章7、常用离散型分布(1)两点分布:若一个随机变量X只有两个可能的取值,且其分布为: (0<p<1)则称X服从处参数为p的两点分布。其中期望E(X)=p,D(X)=p(1-p)(2)二项分布:若一个随机变量X的概率分布由 (k=0,1,2)给出,则称X服从参数为n,p的二项分布,记为:Xb(n,p)(或B(n,p)其中,当n=1时为01分布。 其期望E(X)=np,方差D(X)=np(1-p)(3)泊松分布:若一个随机变量X概率分布为:则称X服从参数为的泊松分布,记为:,其中.泊松定理:在n重伯努利试验中,事件A在每次试验中发生的概率为,如果时,则对任意给定的k,有,这表明,当n很大时,p接近0或1时,有()。 N20,p0.05时用泊松分布。其期望方差相等,即:E(X)=D(X)= 。8、常用连续型分布(1)均匀分布:若连续随机变量X的概率密度为则称X在区间(a,b)上服从均匀分布,记为XU(a,b)。其中,分布函数为:其期望E(X)=,方差D(X)=。(2)指数分布:若随机变量的概率为,则称X服从参数为的指数分布,简记为Xe().其分布函数:其期望E(X)=,方差D(X)=.(3)正态分布:若随机变量X的概率密度为,则称X服从参数为和的正态分布,记为XN(, ),其中和(>0)都是常数。分布函数为:。当称为标准正态分布,概率密度函数为:分布函数为:定理:设其期望E(X)= ,D(X)= 。9、随机变量函数的分布(1)离散型随机变量函数分布一般方法:先根据自变量X的所有可能取值确定因变量Y的所有可能值,然后通过Y的每一个可能的取值(i=1,2,)来确定Y的概率分布。(2)连续型随机变量函数分布方法:设已知X的分布函数或者概率密度,则随机变量Y=g(X)的分布函数,其中,进而可通过Y的分布函数,求出Y的密度函数。例:设随机变量X的密度函数为,求随机变量10、设随机变量XN(,Y=也服从正态分布.即。11、联合概率分布(1)离散型联合分布:XY PX=p PY= 1(2)连续型随机变量函数的分布:例:设随机变量(X,Y)的密度函数求,D(X+Y).解:当0x2时由,得:,当x<0或x>2时,由,所以,同理可求得:; E(X)=,由对称性同理可求得,E(Y)=7/6。因为E(XY)= 所以,cov(X,Y)= E(XY)- E(X) E(Y)=4/3-(7/6)=-1/36。同理得D(Y)=,所以,=D(X+Y)=D(X)+D(Y)+2cov(X,Y)=12、条件分布:若13、随机变量的独立性:由条件分布设A=Yy,且PYy>0,则:,设随机变量(X,Y)的联合分布概率为F(x,y),边缘分布概率为,若对于任意x、y有:,即:,则称X和Y独立。14、连续型随机变量的条件密度函数:设二维连续型随机变量(X,Y)的概率密度为,边缘概率密度函数为,则对于一切使>0的x,定义在X=x的条件下Y的条件密度函数为:,同理得到定义在Y=y条件下X的条件概率密度函数为:,若=几乎处处成立,则称X,Y相互独立。例:设二维随机变量(X,Y)的概率密度函数为:,求(1)确定常数c;(2)X,Y的边缘概率密度函数;(3)联合分布函数F(x,y);(4)PYX;(5)条件概率密度函数;(6)PX<2|Y<115、数学期望:(1)离散型:(2)连续型:,因为并不是每一个函数都能积分,所以并非所有随机变量都有数学期望。数学期望的性质: E(CX)=CE(X) 设X,Y独立,则E(XY)=E(X)E(Y).例:10个人随机进入15个房间,每个房间容纳的人数不限,设X表示有人的房间数,求E(X)(设每个人进入房间是等可能的,且各人是否进入房间相互独立)附:二项分布b(n,p)和两点分布b(1,p)的另一个关系,仍设一个实验只有两个结果:,且P(A)=p,现在将试验独立进行n次,记为n次试验中结果A出现的次数,则,若记其中:16、方差:(1)(2)方差性质:D(CX)=CD(X);若X.Y相互独立,则:17、协方差:(1)cov(X,Y)=E(XY)-E(X)E(Y),特别,X,Y独立时,有:cov(X,Y)=0.(2)协方差性质:cov(X,X)=D(X);cov(aX,bY)=ab cov(X,Y);cov(C,Y)=0;cov(,Y)=随机变量和的方差与协方差的关系.(3)相关系数,性质:;若X和Y相互独立,则=0,即X和Y不相关。若D(X)>0,D(Y)>0,则当且仅当存在常数a,b(),使:附注:设e=EY-(,称为用来近似Y的均方差,则:设D(X)>0,D(Y)>0,有:使均方误差达到最小。18、切比雪夫不等式:设随机变量X的期望E(X)=,方差D(X)=,则对于给定任意正数,有:19、大数定理:设随机变量X,X,X相互独立,且具有相同的期望和方差:,i=1,2,3,则对于任意>0,有:20、中心极限定理;(1)设随机变量X,X,X相互独立,服从同一分布,且, i=1,2,3,则:(2)棣莫佛拉普拉斯定理:设随机变量X,X,X相互独立,并且都服从参数为p的两点分布,则对任意实数x,有:第二部分 数理统计24、点估计常用方法(1)矩估计法:先求E(X),得到一个E(X)与未知参数的式子,用E(X)表示未知参数,再把E(X)用代替即可。例:已知总体X的概率分布为求参数的矩估计。(2)最大似然估计:一般方法:a、写出最大似然函数L(;或c、判断并求出最大值点,在最大值点得表达式中,用样本均值代入即得到参数的最大释然估计值。