离散数学课后习题答案_(左孝凌版)(17页).doc
-离散数学课后习题答案_(左孝凌版)-第 17 页习题 1-5(1) 证明:a) (P(PQ)QÛ (P(PQ)Q Û(PP)(PQ)Q Û(PQ)QÛ(PQ)Q ÛPQQ ÛPTÛTb) P(PQ) ÛP(PQ)Û (PP)Q ÛTQÛTc) (PQ)(QR)(PR)因为(PQ)(QR)Þ(PR)所以 (PQ)(QR)为重言式。d) (ab)(bc) (ca)«(ab)(bc)(ca)因为(ab)(bc)(ca)Û(ac)b)(ca)Û(ac)(ca)(b(ca)Û(ac)(bc)(ba)所以(ab)(bc) (ca)«(ab)(bc)(ca) 为重言式。(2) 证明:a)(PQ)ÞP(PQ) 解法1:设PQ为T (1)若P为T,则Q为T,所以PQ为T,故P(PQ)为T(2)若P为F,则Q为F,所以PQ为F,P(PQ)为T命题得证解法2:设P(PQ)为F ,则P为T,(PQ)为F ,故必有P为T,Q为F ,所以PQ为F。解法3:(PQ) (P(PQ)Û(PQ)(P(PQ)Û(PQ)(PP)(PQ)ÛT所以(PQ)ÞP(PQ)b)(PQ)QÞPQ设PQ为F,则P为F,且Q为F,故PQ为T,(PQ)Q为F,所以(PQ)QÞPQ。c)(Q(PP)(R(R(PP)ÞRQ设RQ为F,则R为T,且Q为F,又PP为F所以Q(PP)为T,R(PP)为F所以R(R(PP)为F,所以(Q(PP)(R(R(PP)为F即(Q(PP)(R(R(PP)ÞRQ成立。(3) 解:a) PQ表示命题“如果8是偶数,那么糖果是甜的”。b) a)的逆换式QP表示命题“如果糖果是甜的,那么8是偶数”。c) a)的反换式PQ表示命题“如果8不是偶数,那么糖果不是甜的”。d) a)的逆反式QP表示命题“如果糖果不是甜的,那么8不是偶数”。(4) 解:a) 如果天下雨,我不去。设P:天下雨。Q:我不去。PQ 逆换式QP表示命题:如果我不去,则天下雨。逆反式QP表示命题:如果我去,则天不下雨b) 仅当你走我将留下。设S:你走了。R:我将留下。RS逆换式SR表示命题:如果你走了则我将留下。逆反式SR表示命题:如果你不走,则我不留下。c) 如果我不能获得更多帮助,我不能完成个任务。设E:我不能获得更多帮助。H:我不能完成这个任务。EH逆换式HE表示命题:我不能完成这个任务,则我不能获得更多帮助。逆反式HE表示命题:我完成这个任务,则我能获得更多帮助(5) 试证明P«Q,Q逻辑蕴含P。证明:解法1:本题要求证明(P«Q) QÞP, 设(P«Q) Q为T,则(P«Q)为T,Q为T,故由«的定义,必有P为T。所以(P«Q) QÞP解法2:由体题可知,即证(P«Q)Q)P是永真式。 (P«Q)Q)P Û (PQ) (PQ) Q)PÛ (PQ) (PQ) Q) P Û (PQ) (PQ) Q) PÛ (QPQ) (QPQ) P Û (QP) T) PÛQPPÛQT ÛT(6) 解:P:我学习 Q:我数学不及格 R:我热衷于玩扑克。如果我学习,那么我数学不会不及格: PQ如果我不热衷于玩扑克,那么我将学习: RP 但我数学不及格: Q因此我热衷于玩扑克。 R即本题符号化为:(PQ)(RP)QÞR证:证法1:(PQ)(RP)Q)R Û (PQ)(RP)Q) RÛ (PQ)(RP)QR Û (QP)(QQ)(RR)(RP)Û QPRPÛ T所以,论证有效。证法2:设(PQ)(RP)Q为T,则因Q为T,(PQ) 为T,可得P为F,由(RP)为T,得到R为T。故本题论证有效。(7) 解:P:6是偶数 Q:7被2除尽 R:5是素数如果6是偶数,则7被2除不尽 PQ或5不是素数,或7被2除尽 RQ5是素数 R所以6是奇数 P即本题符号化为:(PQ)(RQ)R ÞP证:证法1:(PQ)(RQ)R)PÛ (PQ) (RQ) R) PÛ (PQ) (RQ) R) P Û (PP) (PQ) (RR) (RQ)Û (PQ) (RQ)ÛT所以,论证有效,但实际上他不符合实际意义。证法2:(PQ)(RQ)R为T,则有R为T,且RQ 为T,故Q为T,再由PQ为T,得到P为T。(8) 证明:a) PÞ(PQ) 设P为T,则P为F,故PQ为Tb) ABCÞC假定ABC为T,则C为T。c) CÞABB因为ABB为永真,所以CÞABB成立。d) (AB) ÞAB 设(AB)为T,则AB为F。若A为T,B为F,则A为F,B为T,故AB为T。若A为F,B为T,则A为T,B为F,故AB为T。若A为F,B为F,则A为T,B为T,故AB为T。命题得证。e) A(BC),DE,(DE)AÞBC设A(BC),DE,(DE)A为T,则DE为T,(DE)A为T,所以A为T又A(BC)为T,所以BC为T。命题得证。f) (AB)C,D,CDÞAB设(AB)C,D,CD为T,则D为T,CD为T,所以C为F又(AB)C为T,所以AB为F,所以AB为T。命题得证。(9)解:a) 如果他有勇气,他将得胜。P:他有勇气 Q:他将得胜 原命题:PQ 逆反式:QP 表示:如果他失败了,说明他没勇气。b) 仅当他不累他将得胜。P:他不累 Q:他得胜 原命题:QP 逆反式:PQ 表示:如果他累,他将失败。习题 1-6(1)解:a) (PQ)PÛ(PP)QÛ(TQ)b) (P(QR) PQÛ (P(QR)PQÛ(PPQ)(QPQ)(RPQ) Û(PQ)(PQ)(PRQ)ÛPQÛ(PQ) c) PQ(RP)ÛPQ(RP) Û(PQR)(PQP)Û(PQR)FÛPQRÛ(PQR)(2) 解:a)PÛ PPb)PQÛ(PQ) Û (PQ)(PQ)c)PQÛPQÛ (PP)(QQ)(3)解:P(PQ) ÛP(PQ)ÛTÛPP Û (PP)(PP)ÛP(PP) P(PQ) ÛP(PQ)ÛTÛPP Û(PP)Û(PP)P)Û(PP)P)(PP)P)(4)解: PQÛ(PQ)Û(PP)(QQ)Û (PP)(QQ)(PP)(QQ)(5)证明:(BC)Û(BC) Û BC(BC)Û(BC)ÛBC(6)解:联结词“”和“”不满足结合律。举例如下:Ûa)给出一组指派:P为T,Q为F,R为F,则(PQ)R为T,P(QR)为F故 (PQ)R P(QR).Ûb)给出一组指派:P为T,Q为F,R为F,则(PQ) R为T,P(QR)为F故(PQ)R P(QR).(7)证明:设变元P,Q,用连结词«,作用于P,Q得到:P,Q,P,Q,P«Q,P«P,Q«Q,Q«P。但P«QÛQ«P,P«PÛQ«Q,故实际有:P,Q,P,Q,P«Q,P«P(T) (A)用作用于(A)类,得到扩大的公式类(包括原公式类):P,Q,P,Q,(P«Q), T,F, P«Q (B)用«作用于(A)类,得到:P«Q,P«PÛF,P«QÛ(P«Q),P«(P«Q)ÛQ,P«(P«P)ÛP,Q«PÛ(P«Q),Q«QÛF,Q«(P«Q)ÛP,Q«TÛQ, P«QÛP«Q,P«(P«Q)ÛQ,P«TÛP, Q«(P«Q)ÛP,Q«TÛQ,(P«Q)«(P«Q)ÛP«Q.因此,(A)类使用运算后,仍在(B)类中。对(B)类使用运算得:P,Q,P,Q, P«Q, F,T,(P«Q), 仍在(B)类中。对(B)类使用«运算得:P«Q,P«PÛF,P«QÛ(P«Q),P«(P«Q)ÛQ,P«TÛP,P«FÛP,P«(P«Q)ÛQ, Q«PÛ(P«Q),Q«QÛF,Q«(P«Q)ÛP,Q«TÛQ, Q«FÛQ, Q«(P«Q)ÛP, P«QÛP«Q,P«(P«Q)ÛQ,P«TÛP, P«FÛP,P«(P«Q)ÛQ, Q«(P«Q)ÛP,Q«TÛQ, Q«TÛQ,Q«(P«Q)ÛP,(P«Q)«TÛ(P«Q),(P«Q)«FÛP«Q,(P«Q)«(P«Q)ÛFT«FÛF,T«(P«Q)Û P«QF«(P«Q)Û (P«Q)(P«Q)«(P«Q)ÛP«Q.故由(B)类使用«运算后,结果仍在(B)中。由上证明:用«,两个连结词,反复作用在两个变元的公式中,结果只能产生(B)类中的公式,总共仅八个不同的公式,故«,不是功能完备的,更不能是最小联结词组。已证«,不是最小联结词组,又因为P QÛ (P«Q),故任何命题公式中的联结词,如仅用 , 表达,则必可用«,表达,其逆亦真。故 , 也必不是最小联结词组。(8)证明,和不是最小联结词组。证明:若,和是最小联结词,则 PÛ(PP) PÛ(PP) PÛP(P(P)对所有命题变元指派T,则等价式左边为F,右边为T,与等价表达式矛盾。c所以,和不是最小联结词。(9)证明,和, 是最小联结词组。证明:因为,为最小联结词组,且PQÛPQ所以,是功能完备的联结词组,又,都不是功能完备的联结词组。ccc所以,是最小联结词组。c又因为PQÛ(P Q),所以, 是功能完备的联结词组,又, 不是功能完备的联结词组,所以, 是最小联结词组。习题 1-7(1) 解:P(PQ) ÛP(PQ) Û (PP)(PQ) P(PQ)Û (P(QQ)(PQ)Û (PQ)(PQ)(PQ)(2) 解:a) (PQ)R Û(PQ)R Û PQR Û(PQ)(PQ) (QR)(QR)(RP)(RP) b) P(QR)S)ÛP(QR)S) ÛPQRS Û(PQ)(PQ) (QR)(QR)(RS)(RS)(SP)(SP) c) (PQ)(ST)Û(PQ)(ST)Û(PQS)(PQT)d) (PQ)RÛ(PQ)RÛ(PQ)R Û(PR)(QR) e) (PQ)(PQ)Û(PQ)(PQ)Û(PP)(PQ)(QP)(QQ)Û (PQ)(QP)(3) 解:a) P(PQR) Û(PP)(PQ)(PR) Û(PQ)(PR) b) (PQ)(PQ)Û(PQ)(PQ)Û(PQ)(PQ) Û(PPQ)(QPQ) c) (PQ)Û(PQ)Û PQÛ(PQ)(PQ)(QP)d) (PQ)RÛ(PQ)RÛ (PQ)RÛ (PR)(QR)e) (PQ)(PQ)Û(PP)(PQ)(QP)(QQ)Û(PQ)(QP)(4) 解:a) (PQ)(P«Q)Û(PQ) (P«Q)Û (PQ) (PQ)(PQ) Ûå1,2,3ÛPQ=P0b) Q(PQ)Û (PQ)(QQ)Û PQ =å3ÛP0,1,2 Û(PQ)(PQ) (PQ)c) P(P(Q(QR)ÛP(P(Q(QR) ÛPQR=P0Ûå1,2,3,4,5,6,7=(PQR) (PQR) (PQR) (PQR) (PQR) (PQR) (PQR)d) (P(QR) )(P(QR) Û (P(QR) (P(QR)Û (PP) (P(QR) (QR) P) (QR) (QR)Û (PQR) (PQR) =å0,7ÛP1,2,3,4,5,6Û (PQR) (PQR) (PQR) (PQR) (PQR) (PQR)e) P(P(QP) ÛP(P(QP)Û(PP)(PQP) ÛT(TQ) ÛTÛå0,1,2,3= (PQ) (PQ) (PQ) (PQ)f) (QP) (PQ) Û (QP) PQÛ (QP) (PQ) ÛFÛP0,1,2,3= (PQ) (PQ) (PQ) (PQ)(5) 证明:(AB) (AC) Û (AB) (AC)A(BC) ÛA(BC) Û (AB) (AC)(AB) (AB)Û(AB) (AB)Û (AB) (AB)ÛA(BB)ÛATÛA(AB) (BA)Û (AB) (BA)ÛA(BB) ÛAFÛAc) AB(AB)Û (AA)(AB)B ÛABB ÛFAB(AB)Û (AA)(AB)BÛABBÛFd) A(A(AB)ÛAA(AB)ÛTAB(AB)Û(AB) (AB)ÛT (6)解:AÛR(Q(RP),则A*Û R(Q(RP)AÛR(Q(RP)Û(R(Q(RP) ÛRQ(RP)Û(RQ) (RP)A*ÛR(Q(RP)Û(R(Q(RP) ÛRQ(RP)Û(RQ) (RP)(7) 解:设A:A去出差。B:B去出差。C:C去出差。D:D去出差。若A去则C和D中要去一个。 A(CD)B和C不能都去。 (BC)C去则D要留下。 CD按题意应有:A(CD),(BC),CD必须同时成立。因为CD Û (CD) (DC)故(A(CD)(BC) (CD) Û (A(CD) (DC) (BC) (CD)Û (A(CD) (DC) (BC) (CD)Û (A(CD) (DC) (BC) (BD) (CD) C)Û (ABC) (ABD) (ACD) (AC) (BCD) (CDBD) (CDCD) (CDC) (DCBC) (DCBD) (DCCD) (DCC)在上述的析取范式中,有些(画线的)不符合题意,舍弃,得(AC) (BCD) (CD)(DCB)故分派的方法为:BD ,或 DA,或 CA。(8) 解:设P:A是第一。Q:B是第二。R:C是第二。S:D是第四。E:A是第二。 由题意得 (PQ) (RS) (ES) Û (PQ) (PQ) (RS) (RS) (ES) (ES) Û (PQRS) (PQRS) (PQRS) (PQRS)(ES)(ES) 因为 (PQRS)与(PQRS)不合题意,所以原式可化为 (PQRS) (PQRS)(ES) (ES)Û (PQRSES) (PQRSES) (PQRSES)(PQRSES)Û (PQRSE) (PQRSE)因R与E矛盾,故PQRSE为真,即A不是第一,B是第二,C不是第二,D为第四,A不是第二。于是得: A是第三 B是第二 C是第一 D是第四。习题1-8(1)证明:a)(PQ),QR,RÞP(1) R P(2) QR P (3) Q (1)(2)T,I (4) (PQ) P(5) PQ (4)T,E(6) P (3)(5)T,Ib)J(MN),(HG)J,HGÞMN(1) (HG) J P(2) (HG) P(3) J (1)(2)T,I(4) J(MN) P(5) MN (3)(4)T,Ic)BC,(B«C)(HG) ÞGH(1) BC P (2) B (1)T,I (3) C (1)T,I (4) BC (2)T,I(5) CB (3)T,I(6) CB (4)T,E(7) BC (5)T,E(8) B«C (6)(7)T,E(9) (B«C) (HG) P (10) HG (8)(9)T,Id)PQ,(QR)R,(PS) ÞS(1) (QR) R (2) QR (1)T,I(3) R (1)T,I(4) Q (2)(3)T,I(5) PQ P(6) P (4)(5)T,I(7) (PS) P(8) PS (7)T,E(9) S (6)(8)T,I(2) 证明:a)AB,CBÞAC(1) (AC) P (2) A (1)T,I(3) C (1)T,I(4) AB P(5) B (2)(4)T,I(6) CB P(7) B (3)(6)T,I(8) BB 矛盾。(5),(7)b)A(BC),(CD)E,F(DE) ÞA(BF)(1) (A(BF) P(2) A (1)T,I(3) (BF) (1)T,I(4) B (3)T,I(5) F (3)T,(6) A(BC) P(7) BC (2)(6)T,I(8) C (4)(7)T,I(9) F(DE) P (10) DE (5)(9)T,I(11) D (10)T,I(12) CD (8)(11)T,I (13) (CD) E P(14) E (12)(13)T,I(15) E (10)T,I(16) EE 矛盾。(14),(15)c)ABCD,DEFÞAF(1) (AF) P(2) A (1)T,I(3) F (1)T,I(4) AB (2)T,I(5) (AB) CD P(6) CD (4)(5)T,I(7) C (6)T,I(8) D (6)T,I(9) DE (8)T,I(10) DEF P(11) F (9)(10)T,I(12) FF 矛盾。(3),(11)d)A(BC),BD,(EF)D,B(AE) ÞBE(1) (BE) P(2) B (1)T,I(3) E (1)T,I(4) BD P(5) D (2)(4)T,I(6) (EF) D P (7) (EF) (5)(6)T,I(8) E (7)T,I(9) EE 矛盾e)(AB)(CD),(BE)(DF),(EF),ACÞA(1) (AB) (CD) P(2) AB (1)T,I(3) (BE) (DF) P(4) BE (3)T,I(5) AE (2)(4)T,I(6) (EF) P(7) EF (6)T,E(8) EF (7)T,E(9) AF (5)(8)T,I(10) CD (1)T,I(11) DF (3)T,I(12) CF (10)(10)T,I(13) AC P(14) AF (13)(12)T,I(15) FA (14)T,E(16) AA (9)(15)T,I(17) AA (16)T,E(18) A (17) T,E(3) 证明:a)AB,CBÞAC(1) A P(2) AB P(3) B (1)(2)T,I(4) CB P(5) C (3)(4)T,I(6) AC CPb)A(BC),(CD)E,F(DE) ÞA(BF)(1) A P (2) A(BC) P (3) BC (1)(2)T,I(4) B P (5) C (3)(4)T,I(6) (CD) E P (7) C(DE) (6)T,E(8) DE (5)(7)T,I(9) DE (8)T,E(10) (DE) (9)T,E(11) F(DE) P(12) F (10)(11)T,I(13) BF CP(14) A(BF) CPc)ABCD,DEFÞAF(1) A P(2) AB (1)T,I(3) ABCD P(4) CD (2)(3)T,I(5) D (4)T,I(6) DE (5)T,I(7) DEF P(8) F (6)(7)T,I(9) AF CPd)A(BC),BD,(EF)D,B(AE) ÞBE(1) B P(附加前提)(2) BD P(3) D (1)(2)T,I(4) (EF)D P(5) (EF) (3)(4)T,I(6) E (5)T,I(7) BE CP(4)证明:a) RQ,RS,SQ,PQÞP(1) RQ P(2) RS P(3) SQ P(4) Q (1)(2)(3)T,I(5) PQ P(6) P (4)(5)T,Ib) SQ,SR,R,P«QÞP证法一:(1) SR P (2) R P(3) S (1)(2)T,I (4) SQ P (5) Q (3)(4)T,I (6) P«Q P(7)(PQ)(QP) (6)T,E(8) PQ (7)T,I (9) P (5)(8)T,I 证法二:(反证法)(1) P P(附加前提)(2) P«Q P(3)(PQ)( QP) (2)T,E(4) PQ (3)T,I(5) Q (1)(4)T,I(6) SQ P(7) S (5)(6)T,I(8) SR P(9) R (7)(8)T,I(10) R P(11) RR 矛盾(9)(10)T,Ic)(PQ)(RS),(QP)R),RÞP«Q(1) R P(2) (QP) R P(3) QP (1)(2)T,I(4)(PQ) (RS) P(5) (RS) (PQ) (4)T,E(6) RS (1)T,I(7) PQ (5)(6)(8) (PQ) (QP) (3)(7)T,I(9) P«Q (8)T,E(5) 解:a) 设P:我跑步。Q:我很疲劳。 前提为:PQ,Q (1) PQ P (2) Q P (3) P (1)(2)T,I 结论为:P,我没有跑步。b) 设S:他犯了错误。 R:他神色慌张。前提为:SR,R 因为(SR)RÛ(SR)RÛR。故本题没有确定的结论。 实际上,若S R为真,R为真,则S可为真,S也可为假,故无有效结论。c) 设P:我的程序通过。 Q:我很快乐。R:阳光很好。 S:天很暖和。(把晚上十一点理解为阳光不好)前提为:PQ,QR,RS (1) PQ P (2) QR P (3) PR (1)(2)T,I (4) RS P (5) R (4)T,I (6) P (3)(5)T,I结论为: P,我的程序没有通过习题2-1,2-2(1) 解:a) 设W(x):x是工人。c:小张。则有 ¬W(c)b) 设S(x):x是田径运动员。B(x):x