欢迎来到淘文阁 - 分享文档赚钱的网站! | 帮助中心 好文档才是您的得力助手!
淘文阁 - 分享文档赚钱的网站
全部分类
  • 研究报告>
  • 管理文献>
  • 标准材料>
  • 技术资料>
  • 教育专区>
  • 应用文书>
  • 生活休闲>
  • 考试试题>
  • pptx模板>
  • 工商注册>
  • 期刊短文>
  • 图片设计>
  • ImageVerifierCode 换一换

    空间向量与空间角练习题(10页).doc

    • 资源ID:37391887       资源大小:169KB        全文页数:11页
    • 资源格式: DOC        下载积分:15金币
    快捷下载 游客一键下载
    会员登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录   QQ登录  
    二维码
    微信扫一扫登录
    下载资源需要15金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    空间向量与空间角练习题(10页).doc

    -空间向量与空间角练习题-第 11 页课时作业(二十)一、选择题1若异面直线l1的方向向量与l2的方向向量的夹角为150°,则l1与l2所成的角为()A30° B150°C30°或150° D以上均不对【解析】l1与l2所成的角与其方向向量的夹角相等或互补,且异面直线所成角的范围为.应选A.【答案】A2已知A(0,1,1),B(2,1,0),C(3,5,7),D(1,2,4),则直线AB与直线CD所成角的余弦值为()A. BC. D【解析】(2,2,1),(2,3,3),cos,直线AB、CD所成角的余弦值为.【答案】A3正方形ABCD所在平面外一点P,PA平面ABCD,若PAAB,则平面PAB与平面PCD的夹角为()A30° B45° C60° D90°【解析】如图所示,建立空间直角坐标系,设PAAB1.则A(0,0,0),D(0,1,0),P(0,0,1)于是(0,1,0)取PD中点为E,则E,易知是平面PAB的法向量,是平面PCD的法向量,cos,平面PAB与平面PCD的夹角为45°.【答案】B4(2014·陕西师大附中高二检测)如图3­2­29,在空间直角坐标系Dxyz中,四棱柱ABCDA1B1C1D1为长方体,AA1AB2AD,点E、F分别为C1D1、A1B的中点,则二面角B1­A1B­E的余弦值为()图3­2­29A B C. D.【解析】设AD1,则A1(1,0,2),B(1,2,0),因为E、F分别为C1D1、A1B的中点,所以E(0,1,2),F(1,1,1),所以(1,1,0),(0,2,2),设m(x,y,z)是平面A1BE的法向量,则所以所以取x1,则yz1,所以平面A1BE的一个法向量为m(1,1,1),又DA平面A1B1B,所以(1,0,0)是平面A1B1B的一个法向量,所以cosm,又二面角B1­A1B­E为锐二面角,所以二面角B1­A1B­E的余弦值为,故选C.【答案】C二、填空题5棱长为1的正方体ABCD­A1B1C1D1中,M、N分别为A1B1、BB1的中点,则异面直线AM与CN所成角的余弦值是_【解析】依题意,建立如图所示的坐标系,则A(1,0,0),M,C(0,1,0),N,cos,故异面直线AM与CN所成角的余弦值为.【答案】6(2014·临沂高二检测)在空间直角坐标系Oxyz中,已知A(1,2,0)、B(2,1,),则向量与平面xOz的法向量的夹角的正弦值为_【解析】设平面xOz的法向量为n(0,t,0)(t0),(1,3,),所以cosn,因为n,0,所以sinn,.【答案】7已知点E,F分别在正方体ABCD­A1B1C1D1的棱BB1,CC1上,且B1E2EB,CF2FC1,则平面AEF与平面ABC所成的二面角的正切值等于_【解析】如图,建立空间直角坐标系设正方体的棱长为1,平面ABC的法向量为n1(0,0,1),平面AEF的法向量为n2(x,y,z)所以A(1,0,0),E,F,所以,则即取x1,则y1,z3.故n2(1,1,3)所以cosn1,n2.所以平面AEF与平面ABC所成的二面角的平面角满足cos ,sin ,所以tan .【答案】三、解答题8. 如图3­2­30所示,在四面体ABCD中,O,E分别是BD,BC的中点,CACBCDBD2,ABAD.图3­2­30(1)求证:AO平面BCD;(2)求异面直线AB与CD所成角的余弦值【解】(1)证明:连结OC,由题意知BODO,ABAD,AOBD.又BODO,BCCD,COBD.在AOC中,由已知可得AO1,CO,又AC2,AO2CO2AC2,AOC90°,即AOOC.BDOCO,AO平面BCD.(2)以O为坐标原点建立空间直角坐标系,则B(1,0,0),D(1,0,0),C(0,0),A(0,0,1),E,(1,0,1),(1,0),cos,.异面直线AB与CD所成角的余弦值为.9四棱锥P­ABCD的底面是正方形,PD底面ABCD,点E在棱PB上(1)求证:平面AEC平面PDB;(2)当PDAB且E为PB的中点时,求AE与平面PDB所成的角的大小【解】如图,以D为原点建立空间直角坐标系Dxyz,设ABa,PDh,则A(a,0,0),B(a,a,0),C(0,a,0),D(0,0,0),P(0,0,h),(1)(a,a,0),(0,0,h),(a,a,0),·0,·0,ACDP,ACDB,又DPDBD,AC平面PDB,又AC平面AEC,平面AEC平面PDB.(2)当PDAB且E为PB的中点时,P(0,0,a),E,设ACBDO,O,连结OE,由(1)知AC平面PDB于O,AEO为AE与平面PDB所成的角,cosAEO,AEO45°,即AE与平面PDB所成的角的大小为45°.1已知在长方体ABCD­A1B1C1D1中,ABBC1,AA12,E是侧棱BB1的中点,则直线AE与平面A1ED1所成角的大小为()A60° B90°C45° D以上都不对【解析】以点D为原点,分别以DA,DC,DD1所在直线为x轴、y轴、z轴,建立空间直角坐标系,如图由题意知,A1(1,0,2),E(1,1,1),D1(0,0,2),A(1,0,0),所以(0,1,1),(1,1,1),(0,1,1)设平面A1ED1的一个法向量为n(x,y,z),则令z1,得y1,x0,所以n(0,1,1),cosn,1.所以n,180°.所以直线AE与平面A1ED1所成的角为90°.【答案】B2在空间中,已知平面过(3,0,0)和(0,4,0)及z轴上一点(0,0,a)(a0),如果平面与平面xOy的夹角为45°,则a_.【解析】平面xOy的法向量为n(0,0,1),设平面的法向量为u(x,y,z),则即3x4yaz,取z1,则u.而cosn,u,又a0,a.【答案】3. 三棱柱ABC­A1B1C1,CACC12CB,则直线BC1与直线AB1夹角的余弦值为()图3­2­31A. B.C. D.【解析】不妨设CACC12CB2,则(2,2,1),(0,2,1),所以cos,.因为直线BC1与直线AB1夹角为锐角,所以所求角的余弦值为.【答案】A4. 如图,在直三棱柱A1B1C1­ABC中,ABAC,ABAC2,A1A4,点D是BC的中点图3­2­32(1)求异面直线A1B与C1D所成角的余弦值;(2)求平面ADC1与平面ABA1所成二面角的正弦值【解】(1)以A为坐标原点,建立如图所示的空间直角坐标系Axyz,则A(0,0,0),B(2,0,0),C(0,2,0),D(1,1,0),A1(0,0,4) ,C1(0,2,4),所以(2,0,4),(1,1,4). 因为cos,所以异面直线A1B与C1D所成角的余弦值为.(2)设平面ADC1的法向量为n1(x,y,z),因为(1,1,0),(0,2,4),所以n1·0,n1·0,即xy0且y2z0,取z1,得x2,y2,所以n1(2,2,1)是平面ADC1的一个法向量取平面AA1B的一个法向量为n2(0,1,0),设平面ADC1与平面ABA1所成二面角的大小为.由|cos |,得sin .因此,平面ADC1与平面ABA1所成二面角的正弦值为.

    注意事项

    本文(空间向量与空间角练习题(10页).doc)为本站会员(1595****071)主动上传,淘文阁 - 分享文档赚钱的网站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知淘文阁 - 分享文档赚钱的网站(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于淘文阁 - 版权申诉 - 用户使用规则 - 积分规则 - 联系我们

    本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

    工信部备案号:黑ICP备15003705号 © 2020-2023 www.taowenge.com 淘文阁 

    收起
    展开