解三角形公式(8页).doc
-解三角形公式-第 8 页海伦秦九韶公式假设在平面内,有一个三角形,边长分别为a、b、c,三角形的面积S可由以下公式求得:而公式里的p为半周长(周长的一半):注1:"Metrica"(度量论)手抄本中用s作为半周长,所以和两种写法都是可以的,但多用p作为半周长。cosC = (a2+b2-c2)/2abS=1/2*ab*sinC=1/2*ab*(1-cos2 C)=1/2*ab*1-(a2+b2-c2)2/4a2*b2=1/4*4a2*b2-(a2+b2-c2)2=1/4*(2ab+a2+b2-c2)(2ab-a2-b2+c2)=1/4*(a+b)2-c2c2-(a-b)2=1/4*(a+b+c)(a+b-c)(a-b+c)(-a+b+c)设p=(a+b+c)/2则p=(a+b+c)/2,p-a=(-a+b+c)/2,p-b=(a-b+c)/2,p-c=(a+b-c)/2,上式=(a+b+c)(a+b-c)(a-b+c)(-a+b+c)/16=p(p-a)(p-b)(p-c)所以,三角形ABC面积S=p(p-a)(p-b)(p-c)正弦定理a/sinA=b/sinB=c/sinC=2R(2R在同一个三角形中是恒量,R是此三角形外接圆的半径)。变形公式(1)a=2RsinA,b=2RsinB,c=2RsinC(2)sinA:sinB:sinC=a:b:c(3)asinB=bsinA,asinC=csinA,bsinC=csinB(4)sinA=a/2R,sinB=b/2R,sinC=c/2R(5)S=1/2bcsinA=1/2acsinB=1/2absinC余弦定理a2=b2+c²-2bccosAb2=a2+c2-2accosBc2=a2+b2-2abcosC注:勾股定理其实是余弦定理的一种特殊情况。变形公式cosC=(a2+b2-c2)/2abcosB=(a2+c2-b2)/2accosA=(c2+b2-a2)/2bc海伦-秦九韶公式p=(a+b+c)/2(公式里的p为半周长)假设有一个三角形,边长分别为a、b、c,三角形的面积S可由以下公式求得:S=p(p-a)(p-b)(p-c) 高中数学基本不用。已知三条中线求面积方法一:已知三条中线Ma,Mb,Mc,则S=(Ma+Mb+Mc)*(Mb+Mc-Ma)*(Mc+Ma-Mb)*(Ma+Mb-Mc)/3 ;方法二:已知三边a,b,c ;则S= p(p-a)(p-b)(p-c);其中:p=(a+b+c)/2 ;b2+c2=a2cosA=0A=90°直角b2+c2<a2cosA<0A>90°钝角b2+c2>a2cosA>0A<90°锐角a边必须是最大边3解三角形编辑正弦定理已知条件:一边和两角(如a、B、C,或a、A、B)一般解法:由A+B+C=180°,求角A,由正弦定理求出b与c,在有解时,有一解。余弦定理已知条件:两边和夹角(如a、b、C)一般解法:由余弦定理求第三边c,由正弦定理求出小边所对的角,再由A+B+C=180°求出另一角,在有解时有一解。已知条件:三边(如a、b、c)一般解法:由余弦定理求出角A、B,再利用A+B+C=180°,求出角C在有解时只有一解。正弦定理(或余弦定理)已知条件:两边和其中一边的对角(如a、b、A)一般解法:由正弦定理求出角B,由A+B+C=180°求出角C,再利用正弦定理求出C边,可有两解、一解或无解。(或利用余弦定理求出c边,再求出其余两角B、C)若a>b,则A>B有唯一解;若b>a,且b>a>bsinA有两解;若a<bsinA则无解。同角三角函数间的基本关系式: ·平方关系: sin2cos21 1tan2sec2 1cot2csc2 ·积的关系: sin=tan×cos cos=cot×sin tan=sin×sec cot=cos×csc sec=tan×csc csc=sec×cot ·倒数关系: tan ·cot1 sin ·csc1 cos ·sec1 商的关系: sin/costansec/csc cos/sincotcsc/sec 直角三角形ABC中, 角A的正弦值就等于角A的对边比斜边, 余弦等于角A的邻边比斜边 正切等于对边比邻边, ·1三角函数恒等变形公式 ·两角和与差的三角函数: cos(+)=cos·cos-sin·sin cos(-)=cos·cos+sin·sin sin(±)=sin·cos±cos·sin tan(+)=(tan+tan)/(1-tan·tan) tan(-)=(tan-tan)/(1+tan·tan) ·三角和的三角函数: sin(+)=sin·cos·cos+cos·sin·cos+cos·cos·sin-sin·sin·sin cos(+)=cos·cos·cos-cos·sin·sin-sin·cos·sin-sin·sin·cos tan(+)=(tan+tan+tan-tan·tan·tan)/(1-tan·tan-tan·tan-tan·tan) ·辅助角公式: Asin+Bcos=(A²+B²)(1/2)sin(+t),其中 sint=B/(A²+B²)(1/2) cost=A/(A²+B²)(1/2) tant=B/A Asin-Bcos=(A²+B²)(1/2)cos(-t),tant=A/B ·倍角公式: sin(2)=2sin·cos=2/(tan+cot) cos(2)=cos²()-sin²()=2cos²()-1=1-2sin²() tan(2)=2tan/1-tan²() ·三倍角公式: sin(3)=3sin-4sin³()=4sin·sin(60+)sin(60-) cos(3)=4cos³()-3cos=4cos·cos(60+)cos(60-) tan(3)=tan a · tan(/3+a)· tan(/3-a) ·半角公式: sin(/2)=±(1-cos)/2) cos(/2)=±(1+cos)/2) tan(/2)=±(1-cos)/(1+cos)=sin/(1+cos)=(1-cos)/sin ·降幂公式 sin²()=(1-cos(2)/2=versin(2)/2 cos²()=(1+cos(2)/2=covers(2)/2 tan²()=(1-cos(2)/(1+cos(2) ·万能公式: sin=2tan(/2)/1+tan²(/2) cos=1-tan²(/2)/1+tan²(/2) tan=2tan(/2)/1-tan²(/2) ·积化和差公式: sin·cos=(1/2)sin(+)+sin(-) cos·sin=(1/2)sin(+)-sin(-) cos·cos=(1/2)cos(+)+cos(-) sin·sin=-(1/2)cos(+)-cos(-) ·和差化积公式: sin+sin=2sin(+)/2cos(-)/2 sin-sin=2cos(+)/2sin(-)/2 cos+cos=2cos(+)/2cos(-)/2 cos-cos=-2sin(+)/2sin(-)/2 ·推导公式 tan+cot=2/sin2 tan-cot=-2cot2 1+cos2=2cos² 1-cos2=2sin² 1+sin=(sin/2+cos/2)² ·其他: sin+sin(+2/n)+sin(+2*2/n)+sin(+2*3/n)+sin+2*(n-1)/n=0 cos+cos(+2/n)+cos(+2*2/n)+cos(+2*3/n)+cos+2*(n-1)/n=0 以及 sin²()+sin²(-2/3)+sin²(+2/3)=3/2 tanAtanBtan(A+B)+tanA+tanB-tan(A+B)=0 cosx+cos2x+.+cosnx= sin(n+1)x+sinnx-sinx/2sinx 证明: 左边=2sinx(cosx+cos2x+.+cosnx)/2sinx =sin2x-0+sin3x-sinx+sin4x-sin2x+.+ sinnx-sin(n-2)x+sin(n+1)x-sin(n-1)x/2sinx (积化和差) =sin(n+1)x+sinnx-sinx/2sinx=右边 等式得证 sinx+sin2x+.+sinnx= - cos(n+1)x+cosnx-cosx-1/2sinx 证明: 左边=-2sinxsinx+sin2x+.+sinnx/(-2sinx) =cos2x-cos0+cos3x-cosx+.+cosnx-cos(n-2)x+cos(n+1)x-cos(n-1)x/(-2sinx) =- cos(n+1)x+cosnx-cosx-1/2sinx=右边 等式得证编辑本段三角函数的诱导公式 公式一: 设为任意角,终边相同的角的同一三角函数的值相等: sin(2k)sin cos(2k)cos tan(2k)tan cot(2k)cot 公式二: 设为任意角,+的三角函数值与的三角函数值之间的关系: sin()sin cos()cos tan()tan cot()cot 公式三: 任意角与 -的三角函数值之间的关系: sin()sin cos()cos tan()tan cot()cot 公式四: 利用公式二和公式三可以得到-与的三角函数值之间的关系: sin()sin cos()cos tan()tan cot()cot 公式五: 利用公式一和公式三可以得到2-与的三角函数值之间的关系: sin(2)sin cos(2)cos tan(2)tan cot(2)cot 公式六: /2±及3/2±与的三角函数值之间的关系: sin(/2)cos cos(/2)sin tan(/2)cot cot(/2)tan sin(/2)cos cos(/2)sin tan(/2)cot cot(/2)tan sin(3/2)cos cos(3/2)sin tan(3/2)cot cot(3/2)tan sin(3/2)cos cos(3/2)sin tan(3/2)cot cot(3/2)tan (以上kZ)编辑本段正余弦定理 正弦定理是指在三角形中,各边和它所对的角的正弦的比相等,即a/sinA=b/sinB=c/sinC=2R (其中R为外接圆的半径) 余弦定理是指三角形中任何一边的平方等于其它两边的平方和减去这两边与它们夹角的余弦的积的2倍,即a2=b2+c2-2bc cosA 角A的对边于斜边的比叫做角A的正弦,记作sinA,即sinA=角A的对边/斜边 斜边与邻边夹角a sin=y/r 无论y>x或yx 无论a多大多小可以任意大小 正弦的最大值为1 最小值为-1三角恒等式 对于任意非直角三角形中,如三角形ABC,总有tanA+tanB+tanC=tanAtanBtanC 证明: 已知(A+B)=(-C) 所以tan(A+B)=tan(-C) 则(tanA+tanB)/(1-tanAtanB)=(tan-tanC)/(1+tantanC) 整理可得 tanA+tanB+tanC=tanAtanBtanC 类似地,我们同样也可以求证:当+=n(nZ)时,总有tan+tan+tan=tantantan编辑本段部分高等内容 ·高等代数中三角函数的指数表示(由泰勒级数易得): sinx=e(ix)-e(-ix)/(2i) cosx=e(ix)+e(-ix)/2 tanx=e(ix)-e(-ix)/ie(ix)+ie(-ix) 泰勒展开有无穷级数,ez=exp(z)1z/1!z2/2!z3/3!z4/4!zn/n! 此时三角函数定义域已推广至整个复数集。 ·三角函数作为微分方程的解: 对于微分方程组 y=-y''y=y'''',有通解Q,可证明 Q=Asinx+Bcosx,因此也可以从此出发定义三角函数。 补充:由相应的指数表示我们可以定义一种类似的函数双曲函数,其拥有很多与三角函数的类似的性质,二者相映成趣